
Feature Toggles
The configuration api provides an endpoint for collecting feature toggles defined in the
github repo configuration-api-files.

We primarily use Feature Toggles as a release mechanism to support continous
delivery as well as timed releases.

Adding a new feature toggle
To add a new feature toogle, create a PR in the configuration-api-files in the main
file that relates to your project/team, in each environment directory.

NB As a general rule of thumb, its good to enable to feature toggle for development
intially, whil having it off for the others until you need to toggle.

In the @mtfh/common/lib/configuration you will need to define the scope, as well as
the feature toggles the frontend needs to support.

constconst initialFeatureToggles initialFeatureToggles == {{

 MMHMMH:: {{

 TestTest:: falsefalse,,

 TenureActivityHistoryTenureActivityHistory:: falsefalse,,

 RefactorCommentsRefactorComments:: falsefalse,,

 CreateTenureCreateTenure:: falsefalse,,

 EditTenureEditTenure:: falsefalse,,

 }},,

}};;

This step allows us to enforce feature toggle names in our ui.

Using a feature toggle
In react, we provide a hook to access feature toggles within React components:

importimport {{ useFeatureToggle useFeatureToggle }} fromfrom '@mtfh/common/lib/hooks''@mtfh/common/lib/hooks'

constconst ViewView == (()) =>=> {{

 constconst hasEditTenure hasEditTenure == useFeatureToggleuseFeatureToggle(('MMH.EditTenure''MMH.EditTenure'));;

}}

https://github.com/LBHackney-IT/configuration-api-files
https://github.com/LBHackney-IT/mtfh-frontend-common/blob/main/lib/configuration/configuration.ts

Outside of React:

importimport {{ hasToggle hasToggle }} fromfrom '@mtfh/common/lib/configuration''@mtfh/common/lib/configuration'

constconst hasEditTenure hasEditTenure == hasTogglehasToggle(('MMH.EditTenure''MMH.EditTenure'))

Released Deployments
Our micro-frontends are setup for continous delivery through trunk based git flow, and
as a result all unreleased features that introduce change should be feature toggled.
This is so developers can continously work on features and still allow hot fixes.

A helpful strategy to reduce complexity and avoid deeply nested feature toggles, we
recommend duplicating the top level views and marking the current version as legacy.

mtfh-frontend-tenure

├── node_modules

├── src

│ ├── components

│ └── views

│ ├── edit-tenure-legacy

│ └── edit-tenure

└── app.tsx

In app.tsx:

importimport {{ useFeatureToggle useFeatureToggle }} fromfrom '@mtfh/common/lib/hooks''@mtfh/common/lib/hooks';;

importimport {{ EditTenureViewV2EditTenureViewV2,, EditTenureViewEditTenureView }} fromfrom './views''./views';;

exportexport defaultdefault functionfunction AppApp(()):: JSXJSX..ElementElement {{

 constconst hasEditTenureV2 hasEditTenureV2 == useFeatureToggleuseFeatureToggle(('MMH.EditTenureV2''MMH.EditTenureV2'));;

 returnreturn ((

 <<SwitchSwitch>>

 <<RouteRoute pathpath==""/tenure/:tenureId/edit/tenure/:tenureId/edit"">>

 {{hasEditTenureV2 hasEditTenureV2 ?? <<EditTenureViewEditTenureView />/> :: <<EditTenureViewLegacyEditTenureViewLegacy />/>}}

 </</RouteRoute>>

 </</SwitchSwitch>>

))

}}

