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Computational Understanding

of Mental Development
From Behavioral Learning to Language Acquisition

O Human children acquire many physical
skills, concepts, and knowledge,
including language, through physical
and social interaction with their
environment.

O We’d like to obtain an understanding
of the computational process of
mental development and language
acquisition.

Constructive approach
Develop robotic and computational models to better understand the original

Developmental Robotics
/Symbol Emergence in Robotics




Intelligence as a cognitive dynamics

_ o Automatic
Visual recognition speech

recognition B

(robot/human) U
Intelligence !
n M
put Output ~

O Single-purpose O Not sing[e task-oriented
O Task-oriented O Self-organization of
O Intelligence as a procedure sensorimotor information flow

O No autonomy O Autonomy
Intelligence is an existence emerging through self-organization
of sensorimotor information flow.

Related keywords
Predictive coding, world model, unsupervised learning and latent variable models




Symbol emergence in robotics
[Taniguchi+ 16, 19]

O Symbol systems, e.g., language, | DI ..
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Tadahiro Taniguchi, Takayuki Nagai, Tomoaki Nakamura, Naoto Iwahashi, Tetsuya Ogata, and Hideki Asoh,
Symbol Emergence in Robotics: A Survey, Advanced Robotics, 30(11-12) pp.706-728, 2016.
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Multimodal Categorization and Lexical Acquisition
by an Autonomous Robot [Nakamura+ 2009-]

Acquisition the information

TR TEFRER

The robot finds unseen objects

Takaya Araki, Tomoaki Nakamura, Takayuki Nagai, Shogo Nagasaka, Tadahiro Taniguchi, Naoto Iwahashi.
Online Learning of Concepts and Words Using Multimodal LDA and Hierarchical Pitman-Yor Language Model.
IEEE/RSJ International Conference on Intelligent Robots and Systems 2012 (IROS 2012), 1623-1630 .(2012)




Multimodal latent Dirichlet allocation(MLDA)

 The MLDA is a multimodal categorization method that is
an extension of the LDA [Blei+ 2004].

« The MLDA was proposed for making a robot form object
categories in an unsupervised manner [Nakamura+ 2009].

Observations Latent variable

LDA Words in a document (i.e., Bag of words) Topic

MLDA Multimodal (visual, auditory, and haptic) features | Object category
obtained from an object (i.e., Bag of features)

Nakamura, T., Nagai, T., & lwahashi, N. (2009). Grounding of word meanings in multimodal concepts using LDA. 2009 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 3943-3948.




Categorization result based on real-world

multimodal sensorimotor information
Stuffed animals Toy vegetables

Stuffed animals with a bell Maracas Rattles

Cups plastic bottles\

Categorical distribution
over topics

represented by latent variables that were similar to most of the

By integrating multimodal information, the robot formed categories
human participants.




Simultaneous acquisition of word units and
multimodal object categories [Nakamura+ 2014]
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Iwahashi, Mutual Learning of an Ob]ect Concept and Language Model Based on MLDA and NPYLM 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'14), 600 - 607 .(2014)
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Probabilistic generative model for simultaneous acquisition of
word units and multimodal object categories
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Each component is updated using approximate

MAP estimation iteratively.
-> Approximate inference procedure

Tomoaki Nakamura, Takayuki Nagai, Kotaro Funakoshi, Shogo Nagasaka, Tadahiro Taniguchi, and Naoto
Iwahashi, Mutual Learning of an Object Concept and Language Model Based on MLDA and NPYLM, 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'14), 600 - 607 .(2014)




Overview of experiment and results

Kinect This 1s a red spray can. (ko re wa a ka 1 su pure e ka N)
CCD camera | This makes a sound when shaken. (ko re wa o to ga shi ma su)
This 1s made of metal and 1s hard. (ko re wa ki N zo ku de de ki te 1 te ka ta 1)

Barrette Hand

Microphone - ) X - -
Tactile array sensor s o A green plushie of a frog. (m1 do r1 no ka e ru no nu 1 gu ru mu)
ﬁ This is soft. (ko re wa ya wa ra ka 1)

: - This 1s an ammal. (ko re wa do u bu tsu)
6-DOF arm
Headset Microphone
¥ A green plastic bottle. (mi1 do 11 no pe tto bo to ru)
% This 1s green tea. (ko re wa ryo ku cha)

_ Example sentences used in the experiments

0.9 /
g 0.8
é 3
L3 07 | Object categorization
(a) (b} c)
e, . . . N |
Obtaining multimodal sensory information 08 .

W/o

. . P Pro osal Upper bounc

v Unsupervised lexical acquisition was | , mutual™ "
learmng >

performed successfully. o8 |
v’ Both object categorization and “ . |
speech recognition performances 02 | Speech recognition

: . 0 B B
increased using Co-occurrence cues. A ¢

Method

Accuracy




Online spatial concept acquisition method
SpCoSLAM [Taniguchi+ 2017]

(including word discovery task)
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Akira Taniguchi, Yoshinobu Hagiwara, Tadahiro Taniguchi and Tetsunari Inamura, Online Spatial Concept and
Lexical Acquisition with Simultaneous Localization and Mapping, IEEE IROS 2017 p. 811-818 .(2017) oral




Spatial concept is multimodal

Position
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Where is the
space?

How do they
“This is the third table” call the space?
Word “A meeting space”

o
Visual

information

Sound, smellg -

“Under the air conditioner”

How does the
space look
like>




Online spatial concept acquisition with
word discovery task

Given: update
Japanese syllables
(Julius) (Word dictionary) / .
. Q)
Acoustic Language %,
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Graphical model of SpCoSLAM
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Online spatial concept acquisition method (including word
discovery task) SpCoSLAM [Taniguchi+ 2017,2020]

Akira Taniguchi, Yoshinobu Hagiwara, Tadahiro Taniguchi and Tetsunari Inamura, Online Spatial Concept and Lexical Acquisition with
Simultaneous Localization and Mapping, IEEE IROS 2017

Akira Taniguchi, Yoshinobu Hagiwara, Tadahiro Taniguchi, Tetsunari Inamura, Improved and scalable online learning of spatial
concepts and language models with mapping, Autonomous Robots, 44(6), pp.927-946, 2020. DOI: 10.1007/510514-020-09905-0




Visualizing robot’s
memory and perception
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L. El Hafi, S. Isobe, Y. Tabuchi, Y. Katsumata, H. Nakamura, T. Fukui, T. Matsuo,G.A. Garcia Ricardez, M.
Yamamoto, A. Taniguchi, Y. Hagiwara, and T. Taniguchi, System for augmented human-robot interaction
through mixed reality and robot training by non-experts in customer service environments, Advanced Robotics,
34(3-4), pp.157-172, 2020. DOI: 10.1080/01691864.2019.1694068



Spatial Concept-Based Navigation with Human Speech
Instructions via Probabilistic Inference [Taniguchi+ 20]

O Control as Probabilistic Inference (Col)
O We can reformulate reinforcement
-------- () learning as Bayesian inference on
(PO)MDP.[Levince 18, Okada 20]
O SpCoNavi [Taniguchi+ 20]
O In the same way as Col, Bayesian

perform path planning/navigation.
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Sergey Levine, Reinforcement Learning and Control as Probabilistic Inference: Tutorial and’ReView,
arXiv:1805.00909 [cs.LG], 2 May, (2018) https://arxiv.org/abs/1805.00909

Masashi Okada, Norio Kosaka, Tadahiro Taniguchi, PlaNet of the Bayesians: Reconsidering and Improving
Deep Planning Network by Incorporating Bayesian Inference, IR052020

Akira Taniguchi, Yoshinobu Hagiwara, Tadahiro Taniguchi, Tetsunari Inamura, Spatial Concept-Based
Navigation with Human Speech Instructions via Probabilistic Inference on Bayesian Generative Model,
Advanced Robotics, 34(19), pp.1213-1228, 2020. DOI: 10.1080/01691864.2020.1817777

inference on the PGM of SoCoSLAM can

Probability (log scale)



World Robot Summit 2018
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Graphical model of SpCoSLAM
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Probabilistic generative models for
integrative cognitive systems
D @

@0

J w*

TS
() 09— Place concept formation [Taniguchi+ 17]
()—(E)—(¥) st

B

2. Auditory information

Formation of integrated concepts with
object and motion [Attamimi+ 14]

Developing integrative cognitive systems from full-scratch requires huge
cost, i.e., labor force.




SERKET: An Architecture for Connecting Stochastic Models
to Realize a Large-Scale Cognitive Model [Nakamura+ 18]

MLDA
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SERKET: An Architecture for
Connecting Stochastic Models to
Realize a Large-Scale Cognitive
Model

Tomoaki Nakamura', Takayuki Nagai' and Tadahiro Taniguchi?

1. Belief propagation

2. SIR

3. MH

O Connecting €ognitive modules developed as probabilistic generative models and
letting them work together as a single unsupervised learning system.

O Having inter-module communication of probabilistic information and
guaranteeing theoretical consistency to some extent.

O Neuro-SERKET supports deep generative models, i.e., VAE, as well.

Nakamura T, Nagai T and Taniguchi T, SERKET: An Architecture for Connecting Stochastic Models to Realize a
Large-Scale Cognitive Model. Front. Neurorobot. 12:25. (2018) doi: 10.3389/fnbot.2018.00025

Taniguchi, T., Nakamura, T., Suzuki, M. et al. Neuro-SERKET: Development of Integrative Cognitive System
Through the Composition of Deep Probabilistic Generative Models. New Gener. Comput. 38, 23—48 (2020).
https://doi.org/10.1007/s00354-019-00084-w




Generation:
Decomposition of Complex Graphical Model
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Example: unsupervised categorization of image and speech

[Tamguch1+ 2020]
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Table 4 Classification accuracy in the GMM and LDA modules

Accuracy (%) Features introduced in Neuro-SERKET
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Fig. 5 The original graphical model of the integrative PGM (VAE4+GMM+LDA+ASR).
Each block shows each module.
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Fig. 6 Decomposed modules and communication between them following the Neuro-

SERKET framework.

Taniguchi, T., Nakamura, T., Suzuki, M. et al. Neuro-SERKET: Development of Integrative Cognitive System
Through the Composition of Deep Probabilistic Generative Models. New Gener. Comput. 38, 23—48 (2020).
https://doi.org/10.1007/s00354-019-00084-w




"What can we further learn from the brain

for next-generation Al?"

v It was hypothesized that cerebral
cortex is for unsupervised

Unsupervised learning

learning.
el e , :
-1 oweut | v Unsupervised learning can perform
Reinforcement learning a wide range of tasks using PGMs.

% " v The brain is an excellent
T Output reference to build an integrative
cognitive architecture using PGMs.

Basal  Thalamus
ganglia

Input

Supervised learning Target

Error 1

Input Output

Doya, Keniji. "Complementary roles of basal ganglia and cerebellum in learning and motor control." Current opinion in
neurobiology 10.6 (2000): 732-739.

Doya, Keniji. "What are the computations of the cerebellum, the basal ganglia and the cerebral cortex?." Neural
networks 12.7-8 (1999): 961-974.
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Survey on frontiers of language and robotics
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Summary

v" Symbol emergence in robotics is a field in which we explore
computational and robotic model that can form internal
representations and learn symbolic systems, e.g., language,
in a real environment.

v Probabilistic generative models, including DPGMs, allow us to
build integrative cognitive systems that can learn many kinds
of concepts from real sensorimotor experience in an
unsupervised manner.

v" SERKET framework is introduced for further development of
PGM-based cognitive systems.

Future challenges

v Learning wide range of concepts and language, e.g., abstract
concepts and syntactic knowledge, through real-world interactions

v Developing service robots that can be installed into a real service
environment using learning-based approach.

v Developing a whole-brain cognitive architecture integrating
multimodal sensorimotor information and high and low-level
cognitive processes.
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