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Introduction

Few-shot Learning

* Al rely on large datasets for generalization

* |t is challenging for domains with scarce data

novel task with
few examples
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Introduction

Few-shot Learning

 N-way K-shot episodic learning

- Support set is considered a clue for query set
- Loss is calculated with query set (CE in classification task)
- There are generally more query examples than support examples(shot)

- 5-way 5-shot, 5-way 1-shot setting in general
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Introduction

Prior works

Metric-based Optimization-based
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Taken from [Snell, 2017] Taken from [Finn, 2017]

[Snell, 2017] Snell et al. "Prototypical networks for few-shot learning,” NIPS 2017.
[Finn, 2017] C Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks,” ICML 2017.
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Prior works

Good initial parameter point

e Optimization-based model
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Proposed Model

Motivation

 What can we improve on prior works?
1. Relational information between samples is not explicitly used

2. Use only support samples as a clue and query samples for loss

calculation (Fundamental difficulty)
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Proposed Model

Motivation

 What can we improve on prior works?
1. Relational information between samples is not explicitly used

2. Use only support samples as a clue and query samples for loss

calculation (Fundamental difficulty)

— Statistical measurement, graph structure, transduction method ...

are used In recent researches
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Proposed Model

Motivation

 What can we improve on prior works?
1. Relational information between samples is not explicitly used

2. Use only support samples as a clue and query samples for loss

calculation (Fundamental difficulty)

— Label propagation algorithm!
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— Label propagation algorithm!
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Proposed Model

Motivation

1. Label propagation algorithm?
> inapplicable in few-shot (data is limited and unevenly distributed)
2. What is the appropriate hyper-parameter?
> Performance of transduction method is sensitive to the hyper-parameter

(o in label propagation algorithm)
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Proposed Model

Transductive Propagation Networks

Task 1 ] | Task 2 | T Test Task

Transductive Propagation Network
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[Liu, 2019] Liu, Yanbin, et al. "Learning to propagate labels: Transductive propagation network for few-shot learning,” ICLR 2019.
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Proposed Model

Transductive Propagation Networks
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Feature Embedding

Graph Construction

Label Propagation

Taken from [Liu, 2019]

[Liu, 2019] Liu, Yanbin, et al. "Learning to propagate labels: Transductive propagation network for few-shot learning,” ICLR 2019.
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Feature Embedding

> Extract important features of the input images

Squort _Ji c,o_(:X: )_ o g 1
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Feature Embedding Graph Construction Label Propagation

Same architecture]‘;p for tair comparisons (four convolutional blocks)
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Graph Construction

- Create example-wise length-scale parameter ¢
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Feature Embedding Graph Construction Label Propagation

o= g¢(f¢(xi)) is used for calculating the similarity function W
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Graph Construction

Gaussian similarity function
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Graph Construction

A common choice is Gaussian similarity function

d(x., x. i .
W, = exp( (; xj)) W= expl- 1 i f(p(x), £,(x) !

2072 2 o, o;

e Calculate the similarity based on the distance,

but after adjusting with the scaling parameter o

g | will create sigma o like this.. and adjust the features like this..
¢ Because | learned the general rule for task-adaptive graph construction
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Graph Construction

* Only keeps the k-max values in each row of W (k-nearest neighbor graph)

 Apply the normalized graph Laplacians on W

S = D_%WD_%, where D is (i, 1)-value to be the sum of the i-th row of W

leigenvalue| < 1
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Label Propagation
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Label propagation with §
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Label Propagation

* No trainable parameters in this stage

F denote the set of (N X K+ T) X Nmatrixand Y, F, € &

a € (0,1) controls the amount of propagated information

Ft+1 — (lSFt-I- (1 — (,I)Y
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Label Propagation

* No trainable parameters in this stage

F denote the set of (N X K+ T) X Nmatrixand Y, F, € &

a € (0,1) controls the amount of propagated information
Ft+1 — aSFt —+ (1 — (X)Y
F,converges — [* = (1 —a)(l — aS)_lY “closed form (no iteration)

For classification  — F* = ([ — aS)™'Y
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Label Propagation
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Loss

J(p, P) = Zf-\zKJFTZjA;l — IQy; = = Plog(P(y; = j|x) ——
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Compute cross-entropy loss between F* and ground-truth labels from S U O
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Proposed Model

Transductive Propagation Networks
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Contribution

Main contribution

1. First to model transduction inference explicitly in few-shot learning

2. In transduction inference, propose to learn to propagate labels between data

iInstances for unseen classes via episodic meta-learning

3. TPN outperforms the state-of-the-art method on both benchmark dataset

(minilmageNet and tieredlmageNet)
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Contribution

Inductive vs. Transductive

* Induction is reasoning from observed training cases to general rules,

which are then applied to the test cases.

* Transduction is reasoning from observed, specific(training) cases to

specific(test) cases.

30



Contribution

Inductive vs. Transductive

« Example) 5-way 5-shot, T =75

----------------------

—> Few-shot Learner Classity Q Q O

---------------------

----------------------

TPN Classity O Q O

---------------------

/5 more examples for inference!
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Experiment

 minilmageNet: 100 classes, each class containing 600 examples

* tieredlmageNet: 600 classes, each class containing 1281(avg.) examples

* [ransduction - No: Inference of query sample is performed individually
* Transduction - Yes: Inference of query sample is performed at once (7TPN)

* Transduction - BN: query samples information is shared using BN

32



Experiment

Table 1: Few-shot classification accuracies on minilmageNet. All results are averaged over 600 test episodes.

Top results are highlighted.

S-way Acc 10-way Acc
Model Transduction I-shot 5-shot 1-shot 5-shot
MAML (Finn ef al., 2017) BN 48.70 63.11 31.27 46.92
MAML+Transduction Yes 50.83 66.19 31.83 48.23
Reptile (Nichol ef al., 2018) No 4707 6274 31.10 44.66
Reptile + BN (Nichol ef al., 2018) BN 4997 6599 32.00 47.60
PROTO NET (Snell et al., 2017) No 46.14 65.77 3288 49.29
PROTO NET (Higher Way) (Snell ef al., 2017) No 4942 68.20 3461 50.09
RELATION NET (Sung et al., 2018) BN 51.38. 67.07 3486 47.94
Label Propagation Yes 52.31  68.18 3523 51.24
TPN Yes 53.75 6943 36.62 52.32
TPN (Higher Shot) Yes 5551 6986 38.44 52.77
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Experiment

Table 2: Few-shot classification accuracies on tieredlmageNet. All results are averaged over 600 test

episodes. Top results are highlighted.

S-way Acc 10-way Acc
Model Transduction 1-shot 5-shot 1-shot 5-shot
MAML (Finn ef al., 2017) BN 51,67 7030 3444 53.32
MAML + Transduction Yes 53.23 70.83 3478 54.67
Reptile (Nichol ef al., 2018) No 48.97 66.47 33.67 48.04
Reptile + BN (Nichol ef al., 2018) BN 3236 F1.03 3532 5198
PROTO NET (Snell et al., 2017) No 4858 B9271 313> JSI.83
PROTO NET (Higher Way) (Snell ef al., 2017) No 53.31 12,69 3862 38,32
RELATION NET (Sung et al., 2018) BN 5448  71.31 36.32 58.05
Label Propagation Yes 55.23 7043 3939 57.89
TPN Yes 5753 7285 4093 59.17
TPN (Higher Shot) Yes 5991 7330 4480 5944
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Experiment

Table 3: Semi-supervised comparison on minilmageNet.

Model l-shot 5-shot 1-shot w/D  5-shot w/D
Soft £k-Means (Ren ef al., 2018) 50.09 64.59 48.70 63.55
Soft k-Means+Cluster (Renef al., 2018) 49.03 63.08 48.86 61.27
Masked Soft k-Means (Ren ef al., 2018) 50.41 64.39 49.04 62.96
TPN-semi 52.78 66.42 50.43 64.95
Table 4: Semi-supervised comparison on tieredlmageNet.
Model l-shot 5-shot 1-shot w/D  5-shot w/D
Soft £k-Means (Ren ef al., 2018) 5352 JO25 49.88 68.32
Soft £-Means+Cluster (Renefal., 2018) 51.85 69.42 51.36 67.56
Masked Soft £-Means (Ren ef al., 2018) 52.39  69.88 51.38 69.08
TPN-semi 55.74 71.01 53.45 69.93
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Conclusion

e Transductive + Few-shot
> Applicable to Few-shot Leaning

> Propose the possibility of follow-up research

* 0 is not hyper-parameter

» Key-point: Task-adaptive scaling parameter
> Largely ameliorating the uneven data distribution problem

* [he state-of-the-art performance
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Appendix

* Higher shot / Query number

Test Accuracy (5-way)

1-shot Acc
Bl 5-shot Acc

1-shot

5-shot

10-shot 15-shot 20-shot

(a) minilmagenet

Test Accuracy (5-way)

1-shot Acc
Bl 5-shot Acc

1-shot

5-shot

10-shot 15-shot 20-shot

(b) tieredimagenet

38

Table 5: Accuracy with various query numbers

minilmageNet 1-shot

5 10 15 20 25 30
Train=15 5229 5295 53775 5392 5457 5447
Test=15 53.53 5372 53775 52779 5284 5247
Train=Test | 51.94 5347 53775 54.00 53.59 53.32

minilmageNet 5-shot

5 10 15 20 25 30
Train=15 66.97 6930 6943 6992 70.54 70.36
Test=15 68.50 68.85 69.43 69.26 69.12 68.89
Train=Test | 67.55 69.22 6943 69.85 70.11 69.94




Appendix

e |LOSS

> Softmax using F* and negative log-likelihood cross-entropy

exp(F7;)

Eé'vzl exp(P}"]‘-)

J(p,¢) =SSN — Iy, == j)log(P(g; = j)Ix;)

P(y; = jlxi) =

39



Appendix

 |eigenvalue of S| < 1

1. Similar matrix in Linear algebra

B=P''AP «— PBP ! =AIfAv =M, then PBP v = A\v =— BP v =)\P v
2. S is similar with markov(stochastic) matrix
S is similiar with A = D'W

Meaning of similarity: B = P AP
A=D"'W =D "?SD"?
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Appendix

 Convergence of £,

F(0)=Y,and F(t+1) =aSF(t)+ (1-a)Y
F(t) = (a9)" 'Y + (1-a)Z ;) (aS)'Y

If 0 < a < 1 and |eigenvalue of S| < 1,

lim (aS)"! = 0, and lim £{7j(aS)’ = (1 —aS) "
— 00

t—00

F* =limi oo F, = (1 —a)(1 —aS) 'Y
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AppendiX

* [ransductive setting

> MAML.: All support & query info were used for calculating BN statistics
> MAML+Transduction: Add transduction reqularization term

> Reptile: All support and only one query info were used for calculating BN
statistics

> Reptile+BN: All support & query info were used for calculating BN statistics

> ProtoNet: All support and only one query info were used for calculating BN
statistics
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Appendix

 Normalized graph Laplacian

Q Q-
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A
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Appendix

 MAML+Transduction

T ~ NxK+T ~ o~
J(0) =D i—1 YilogP(yi|x:) Zi,szl_'_ WinYi—YjH%

e Sigma
> conv - conv - FC(out 8) - FC(out 1)
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