Learning to Propagate Labels: Transductive Propagation Network for Few-shot Learning (ICLR19)

2021.03.06 Yuho Jeong

- 1. Introduction
- 2. Proposed Model
- 3. Contribution
- 4. Experiment
- 5. Conclusion

- Al rely on large datasets for generalization
- It is challenging for domains with scarce data

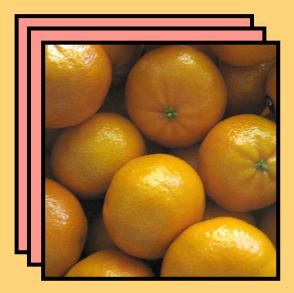
novel task with few examples

Machines fail to re-optimize models for novel task

• N-way K-shot episodic learning

Support Set

Strawberry

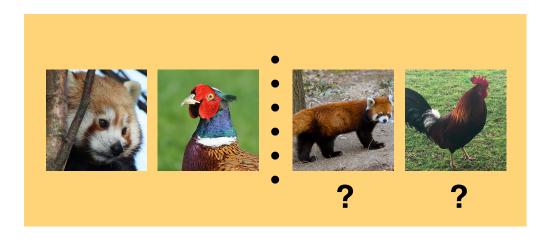


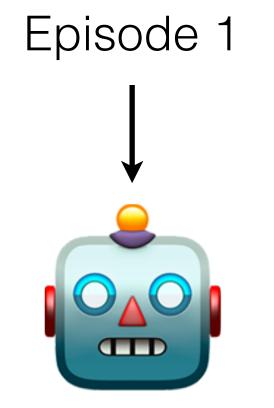
Orange

Query Set

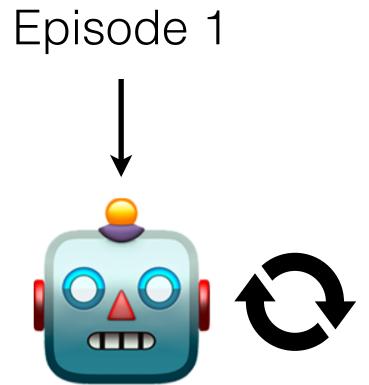
Episode with 2-way 3-shot

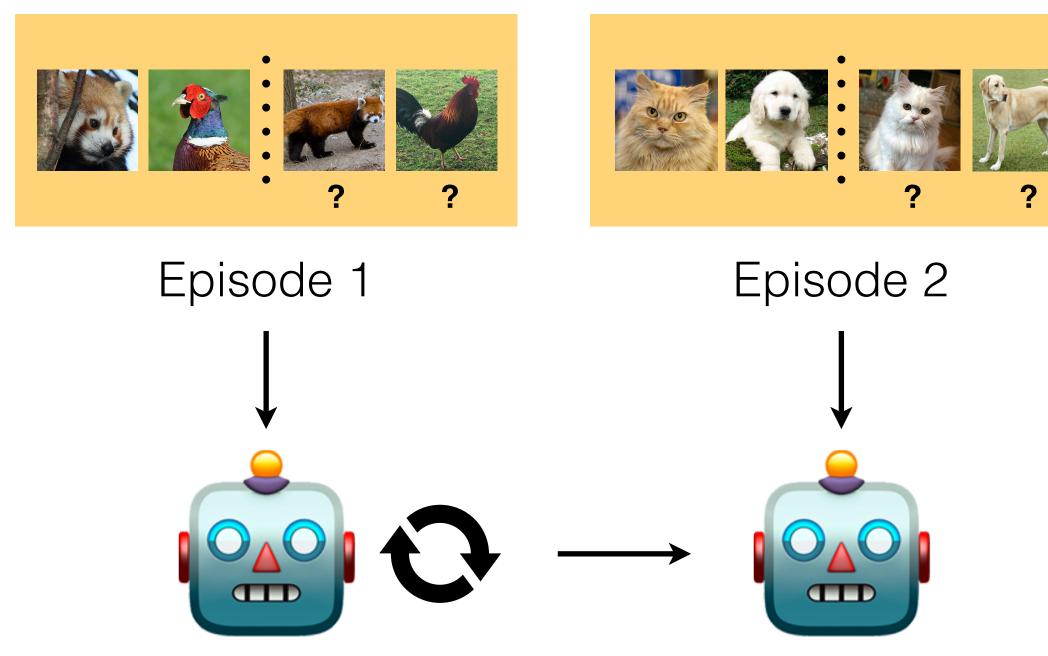
- N-way K-shot episodic learning
 - Support set is considered a clue for query set
 - Loss is calculated with query set (CE in classification task)
 - There are generally more query examples than support examples(shot)
 - 5-way 5-shot, 5-way 1-shot setting in general

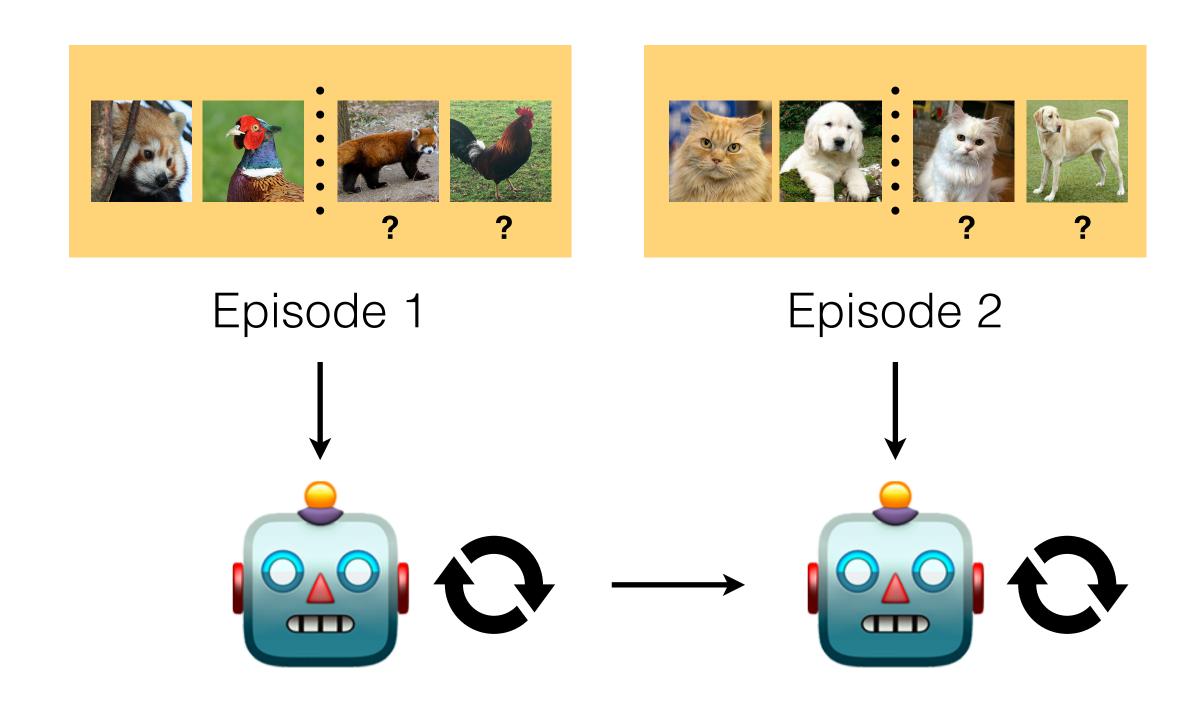


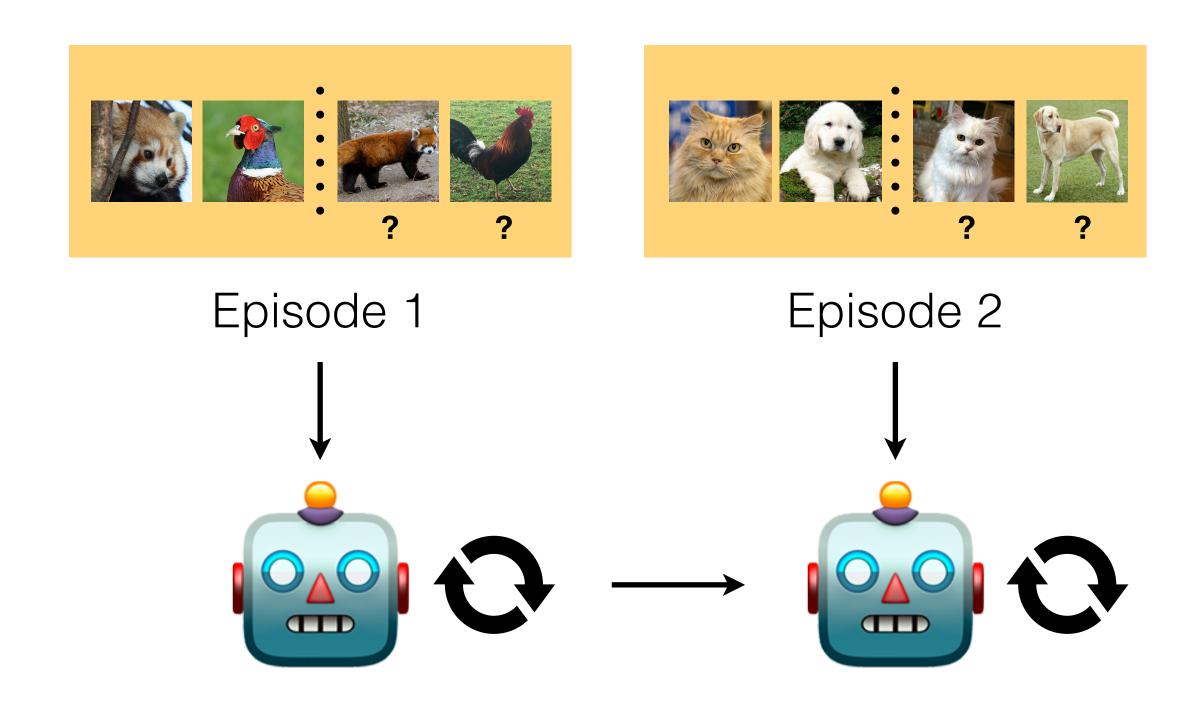


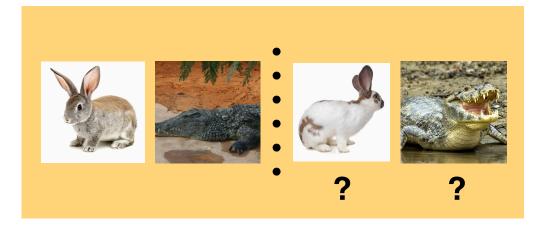


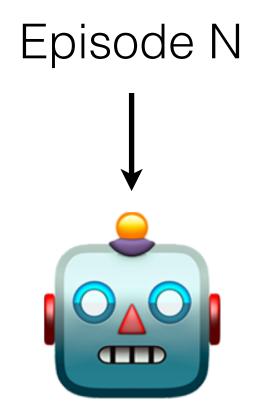


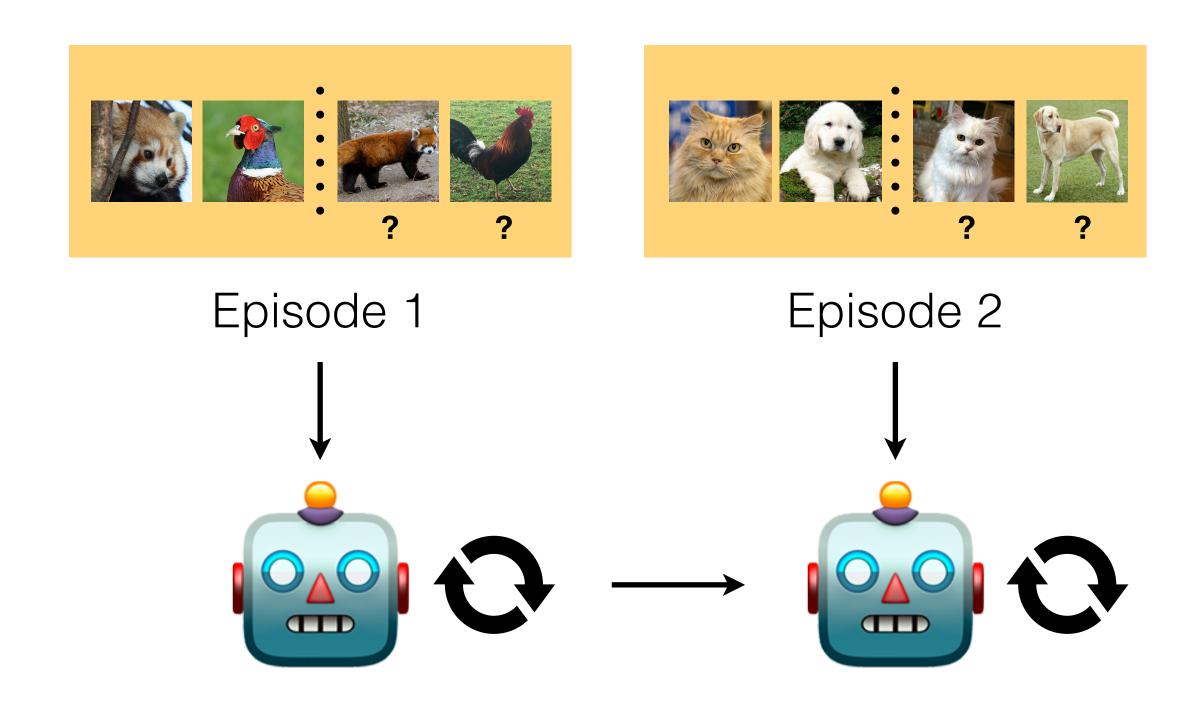


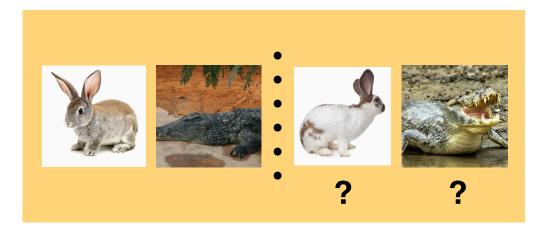


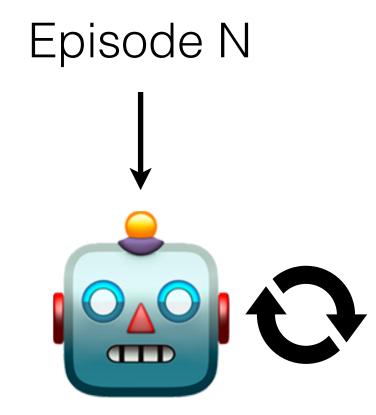


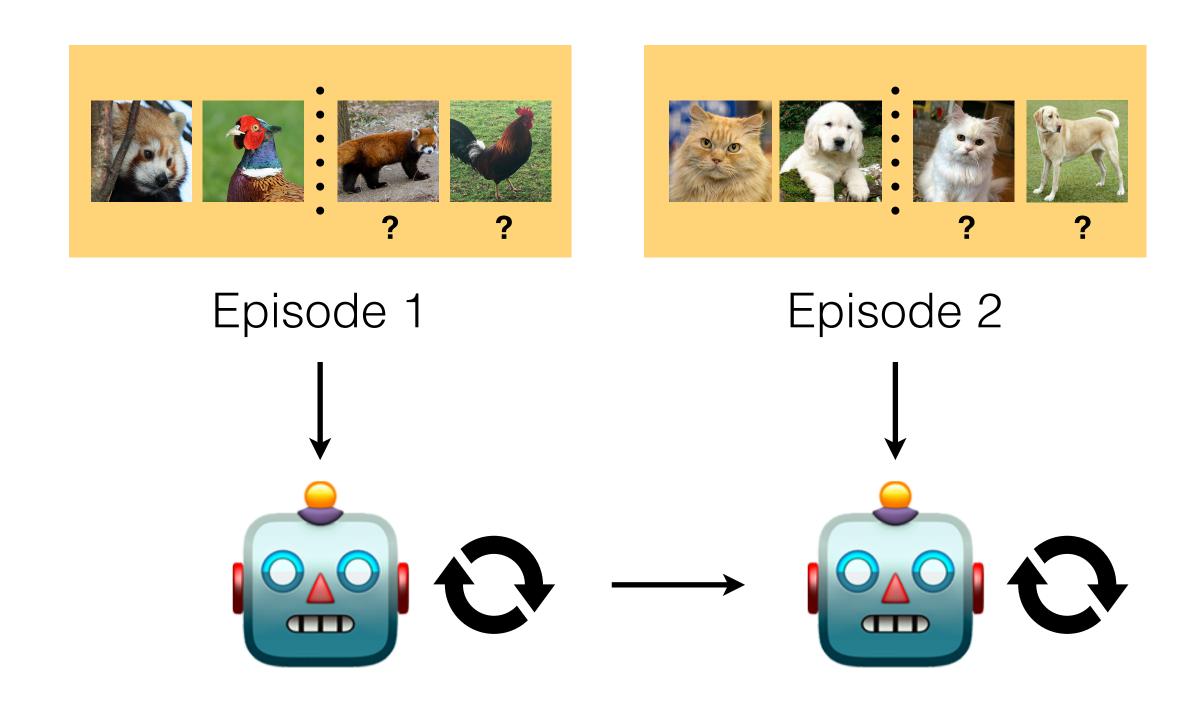


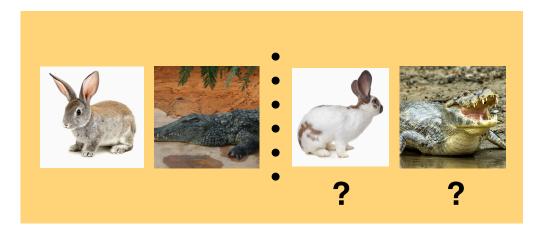


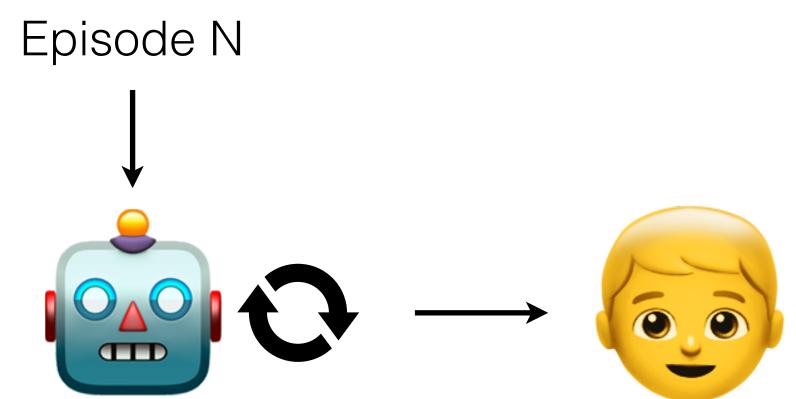




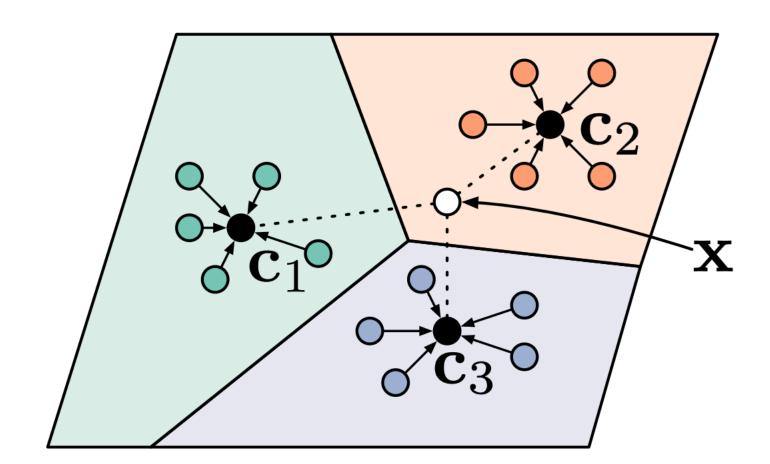








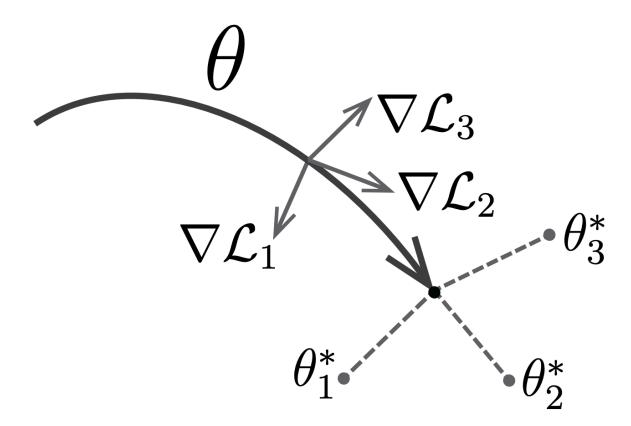
Metric-based



Taken from [Snell, 2017]

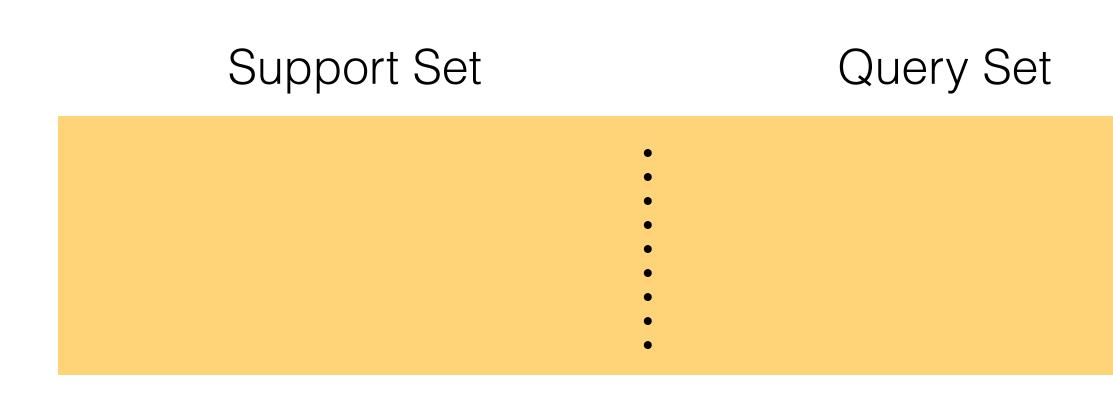
[Snell, 2017] Snell et al. "Prototypical networks for few-shot learning," NIPS 2017. [Finn, 2017] C Finn et al. "Model-agnostic meta-learning for fast adaptation of deep networks," ICML 2017.

Optimization-based

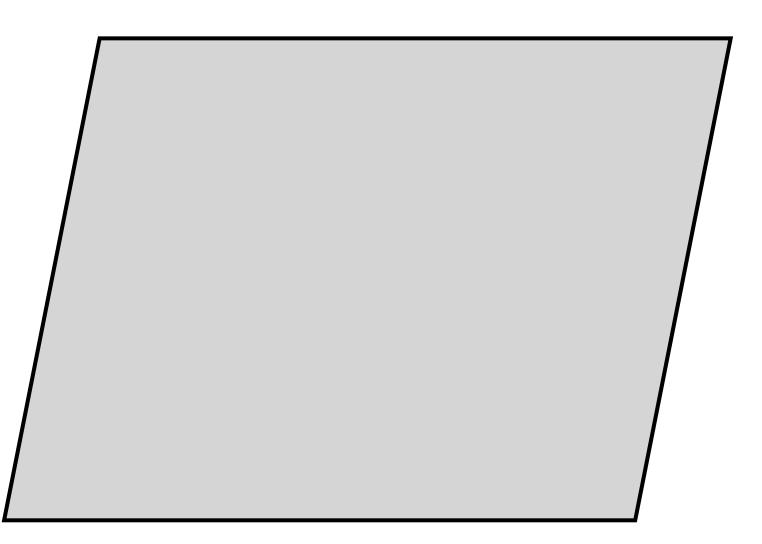


Taken from [Finn, 2017]

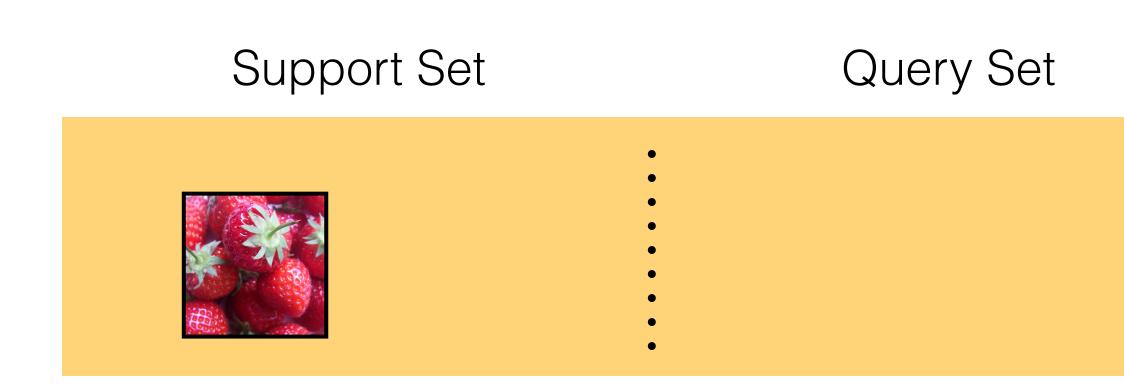
• Metric-based model



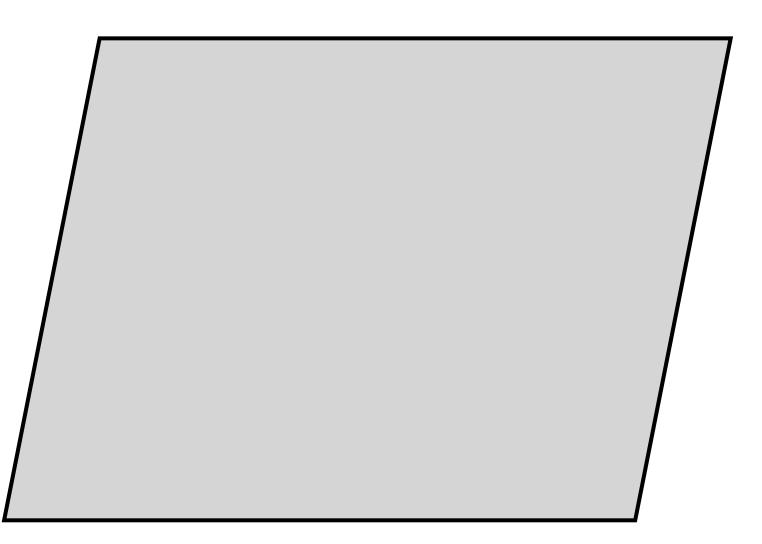
Episode with 2-way 3-shot



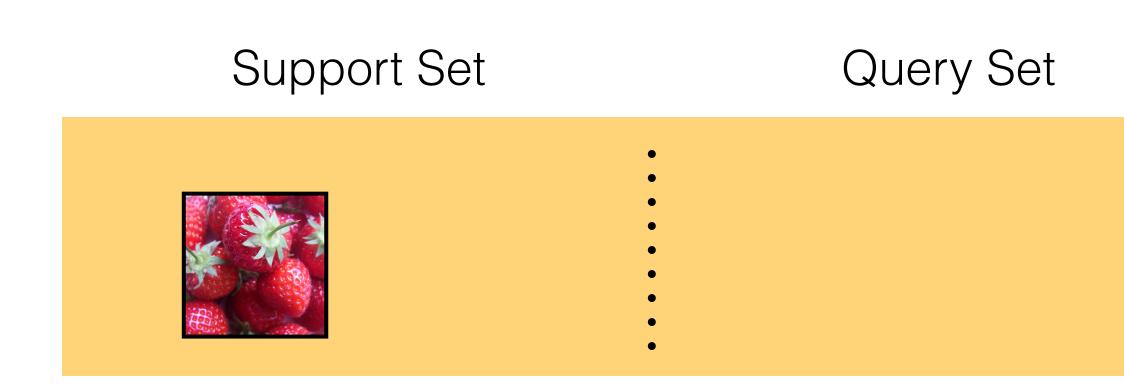
• Metric-based model



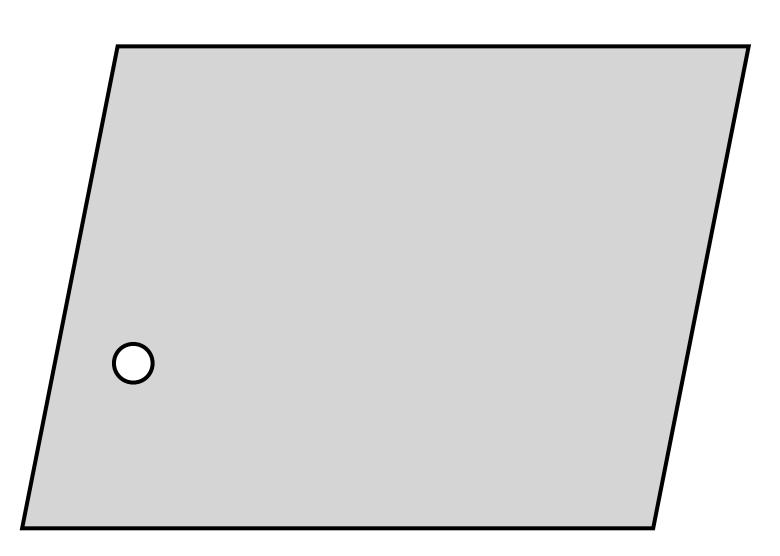
Episode with 2-way 3-shot



• Metric-based model

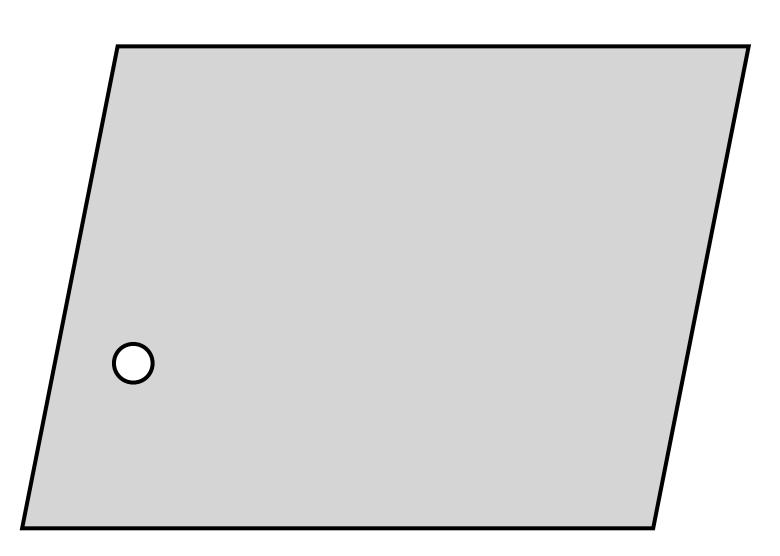


Episode with 2-way 3-shot



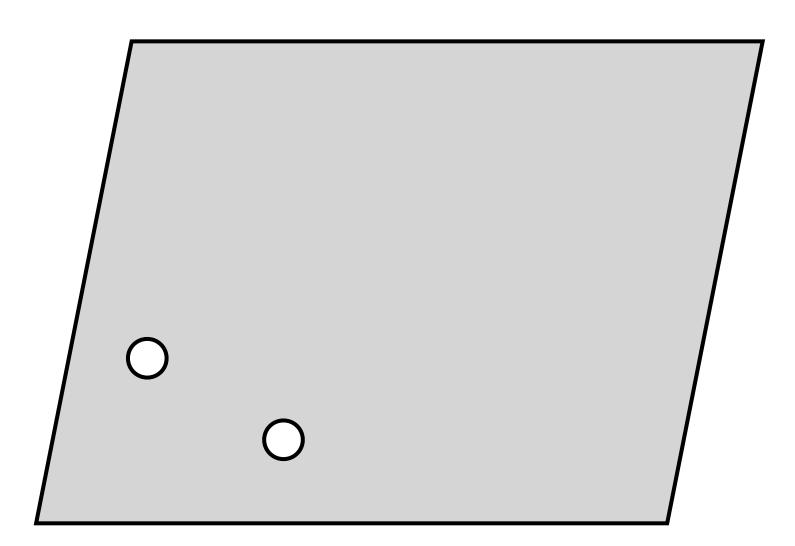
• Metric-based model

Episode with 2-way 3-shot

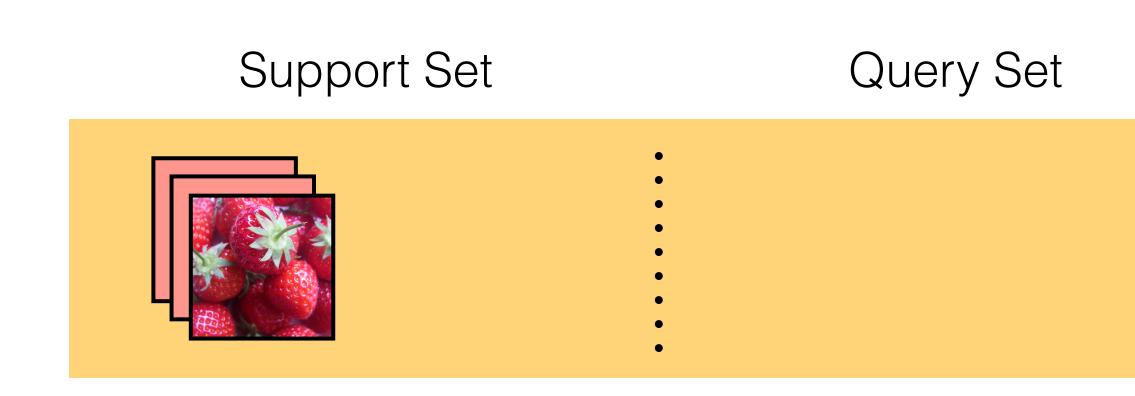


• Metric-based model

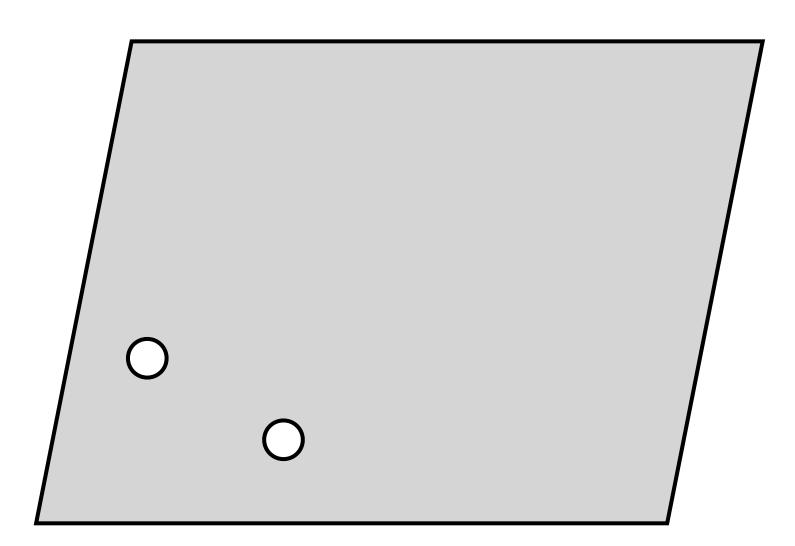
Episode with 2-way 3-shot



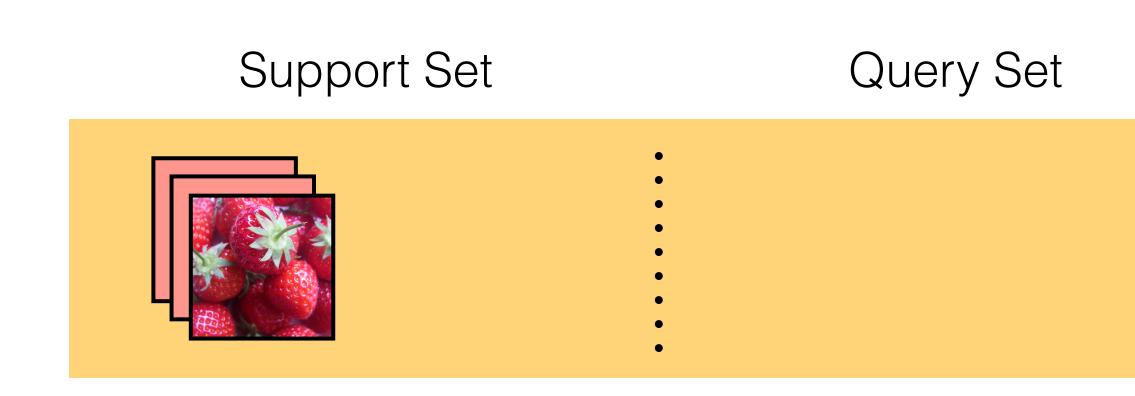
• Metric-based model



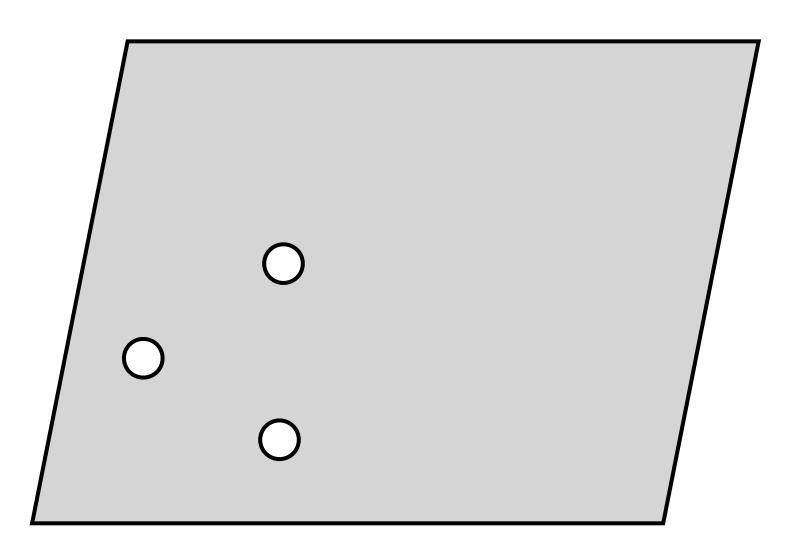
Episode with 2-way 3-shot



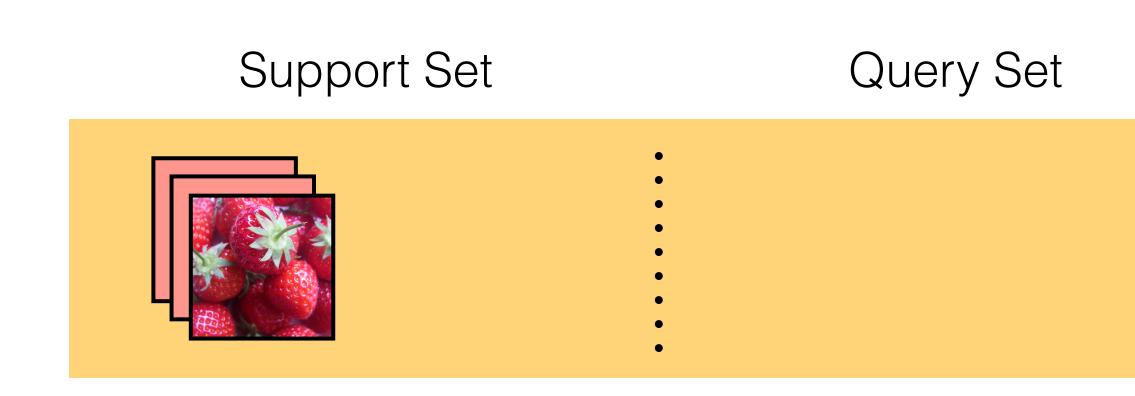
• Metric-based model



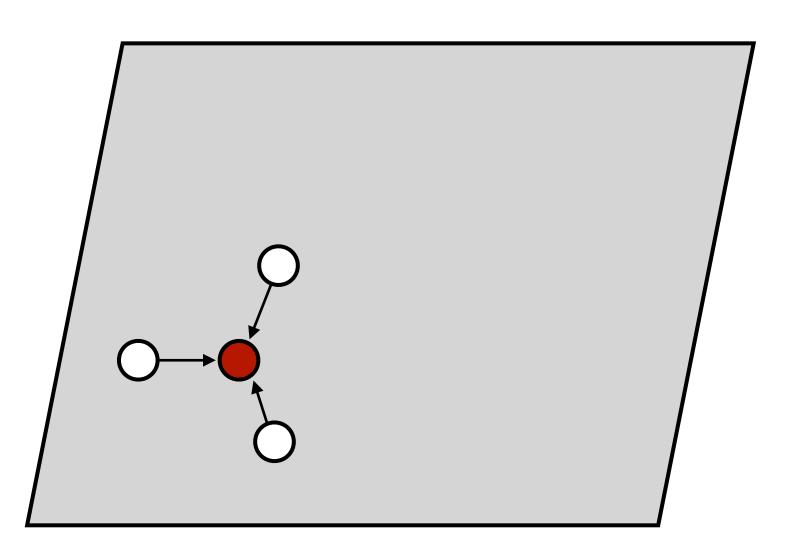
Episode with 2-way 3-shot



• Metric-based model

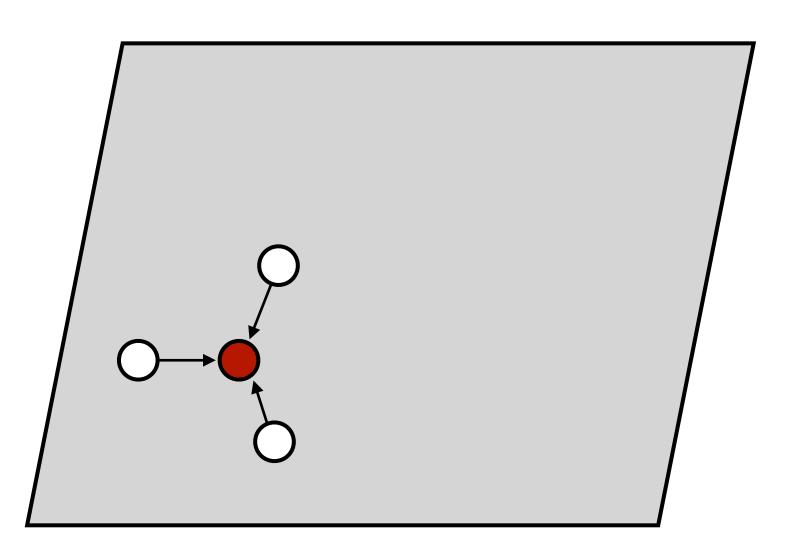


Episode with 2-way 3-shot



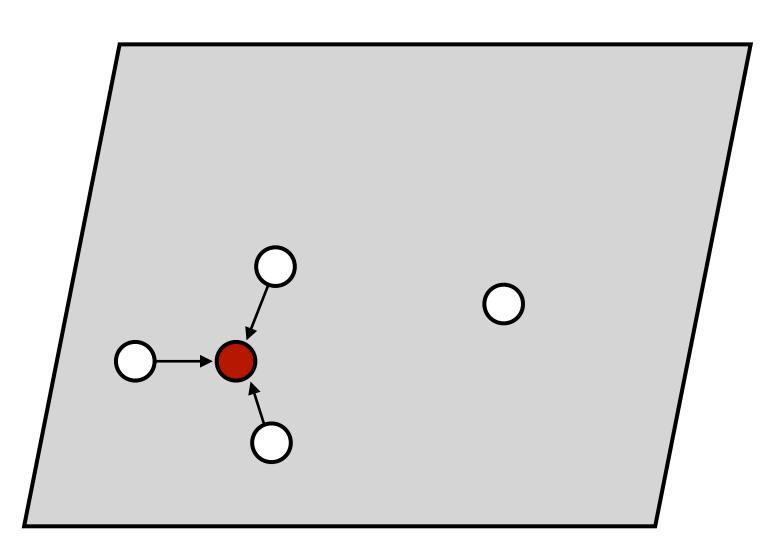
• Metric-based model

Episode with 2-way 3-shot



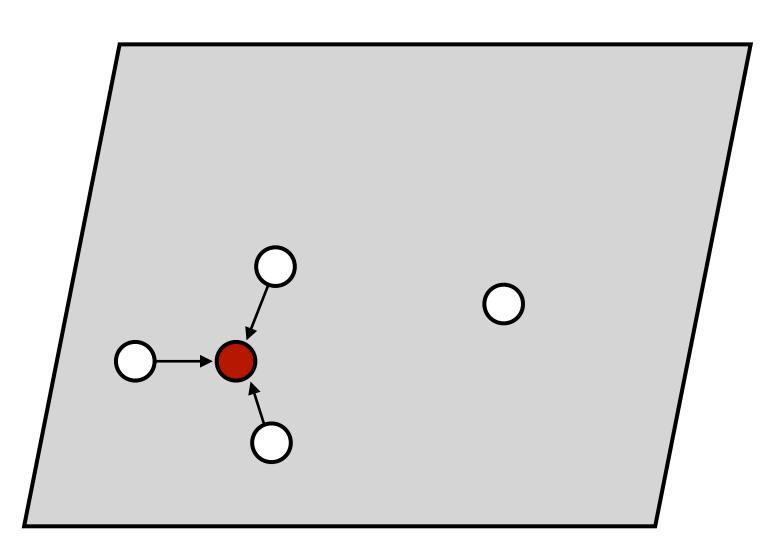
• Metric-based model

Episode with 2-way 3-shot



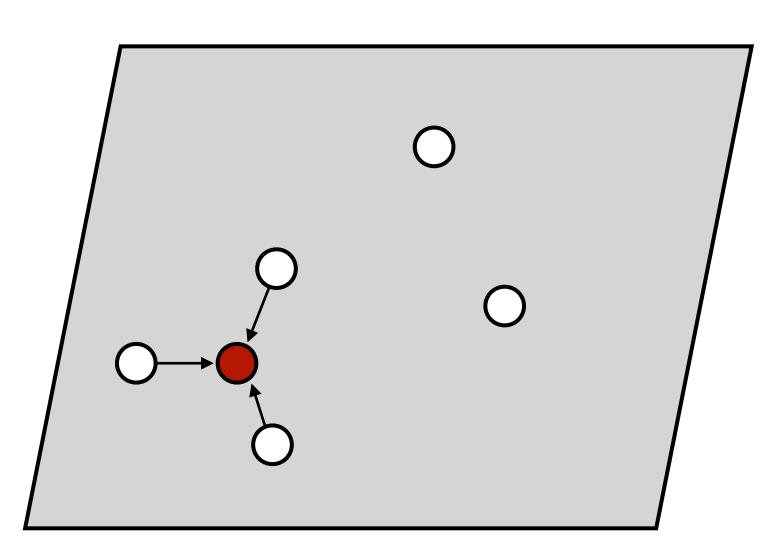
• Metric-based model

Episode with 2-way 3-shot



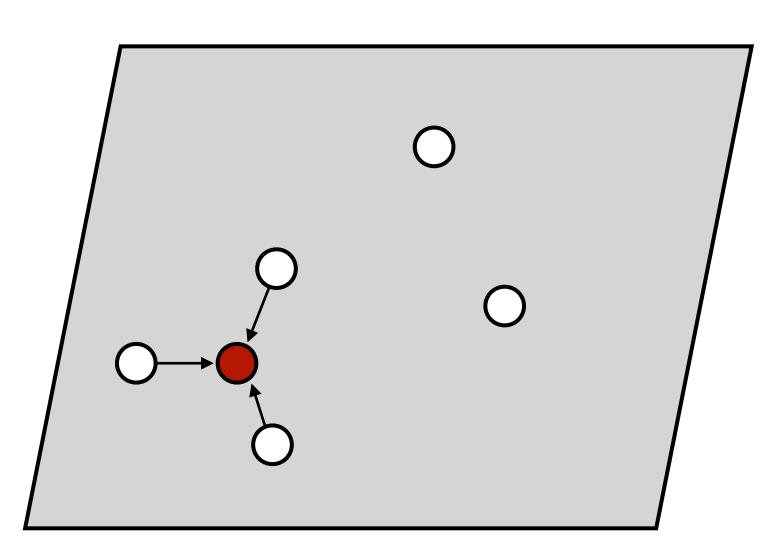
• Metric-based model

Episode with 2-way 3-shot



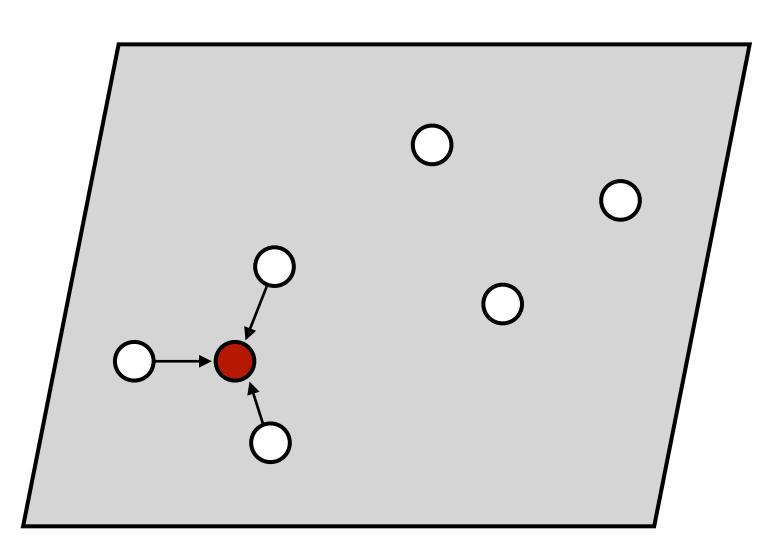
• Metric-based model

Episode with 2-way 3-shot



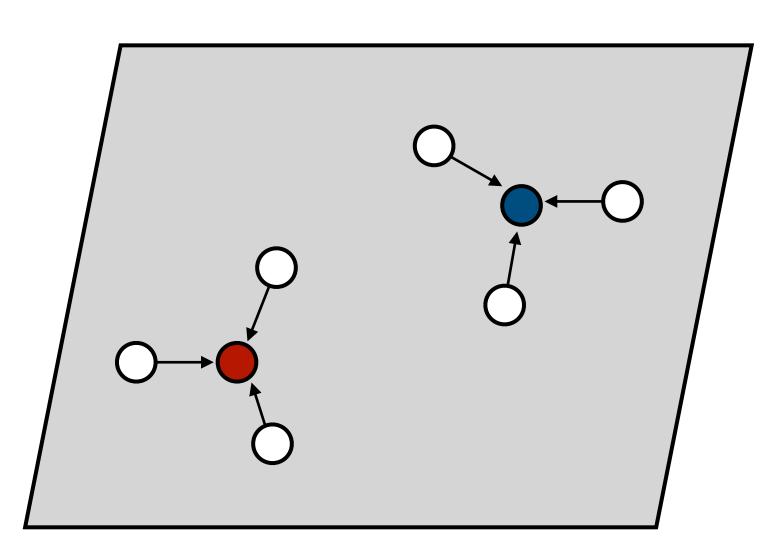
• Metric-based model

Episode with 2-way 3-shot



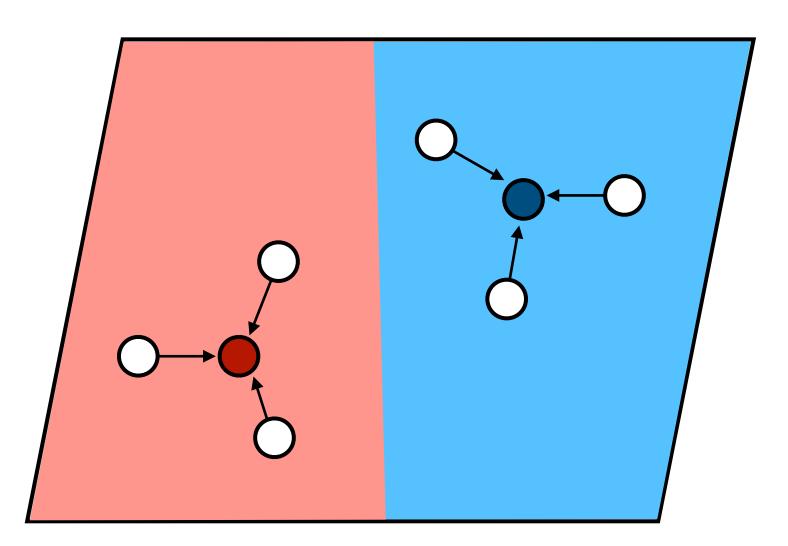
• Metric-based model

Episode with 2-way 3-shot



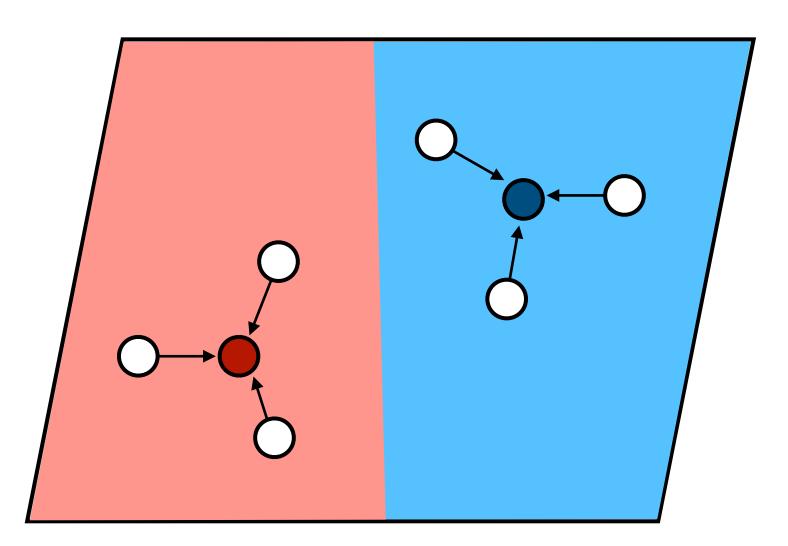
• Metric-based model

Episode with 2-way 3-shot



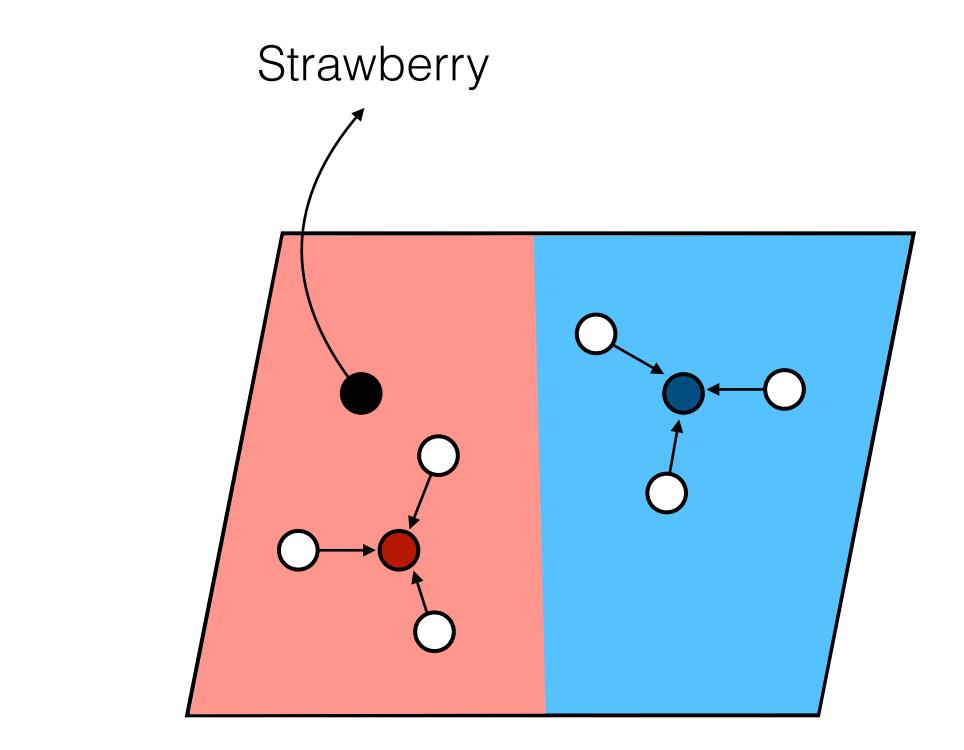
• Metric-based model

Episode with 2-way 3-shot



• Metric-based model

Episode with 2-way 3-shot



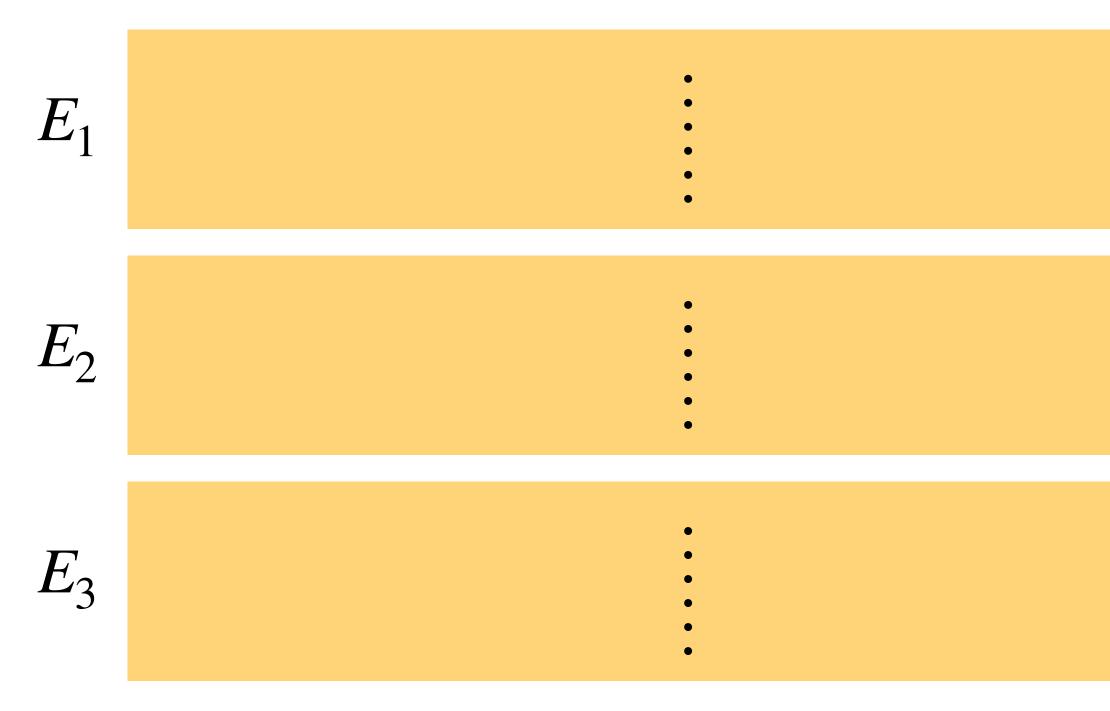
Metric-based model

Episode with 2-way 3-shot

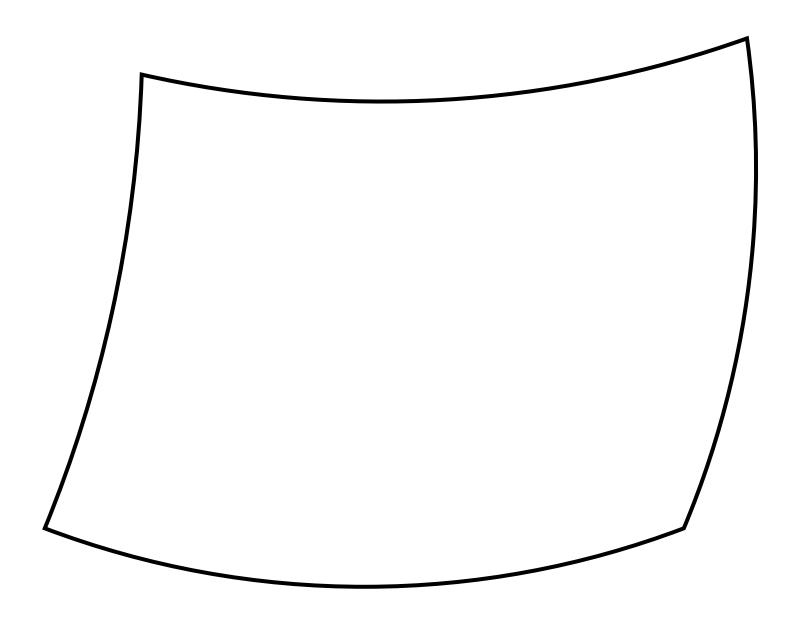
Metric-based model

Episode with 2-way 3-shot

Optimization-based model

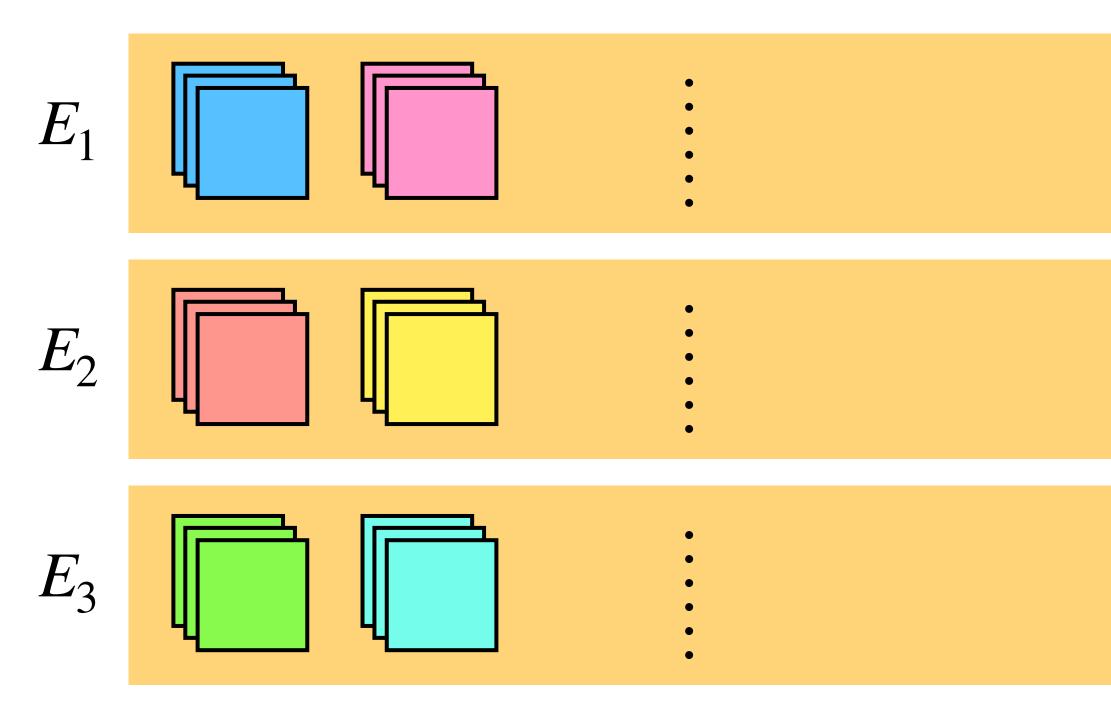


*called 'meta-batch'

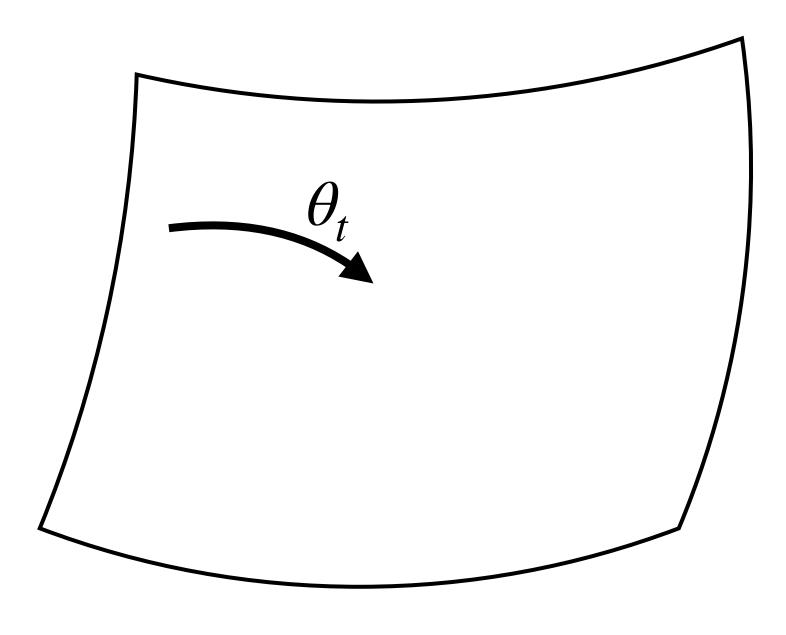


Parameter space

Optimization-based model

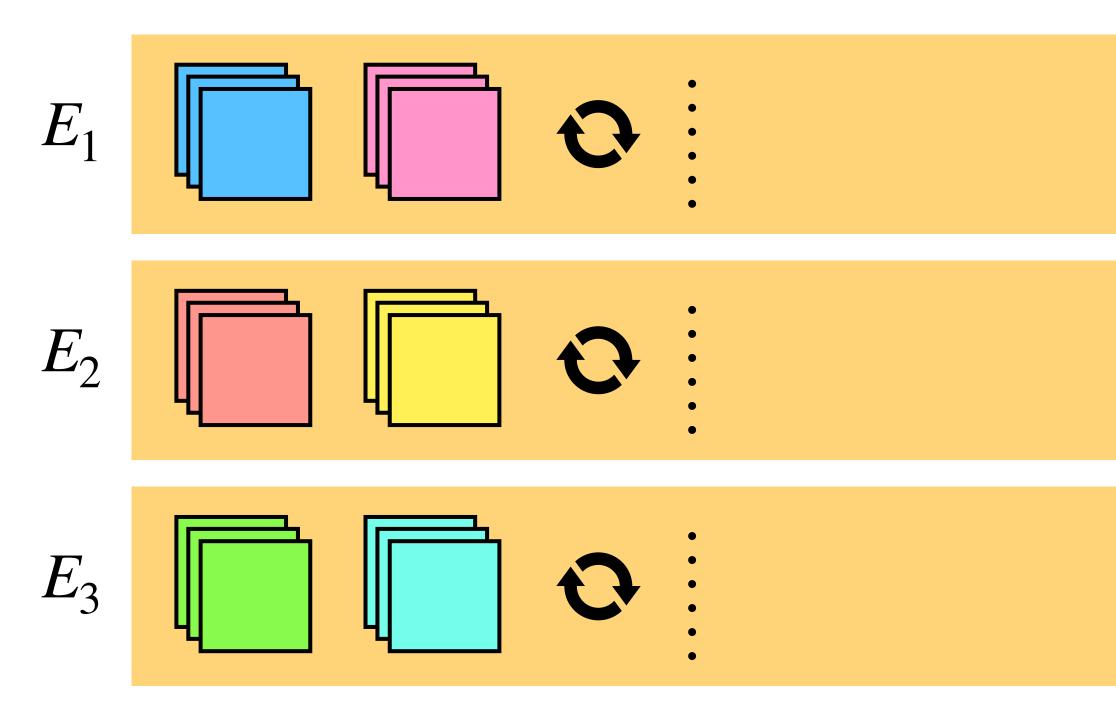


*called 'meta-batch'

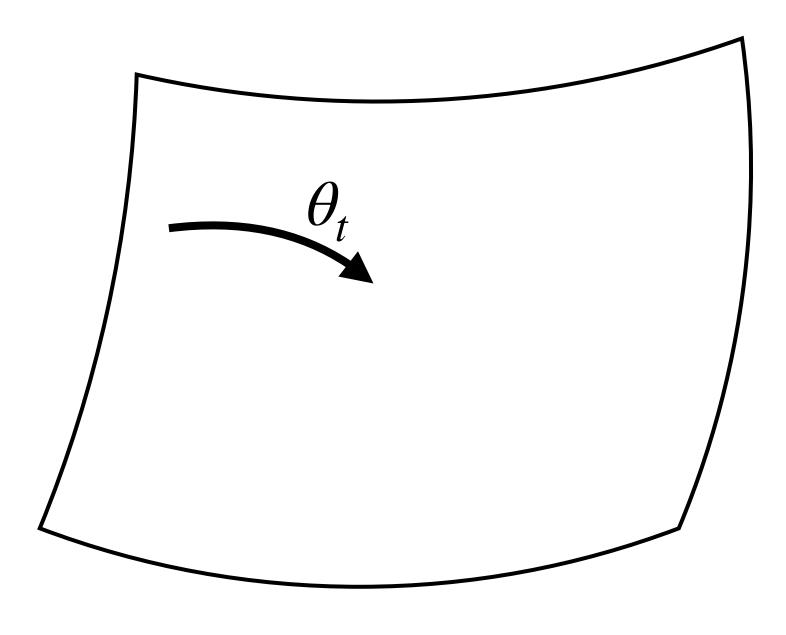


Parameter space

Optimization-based model

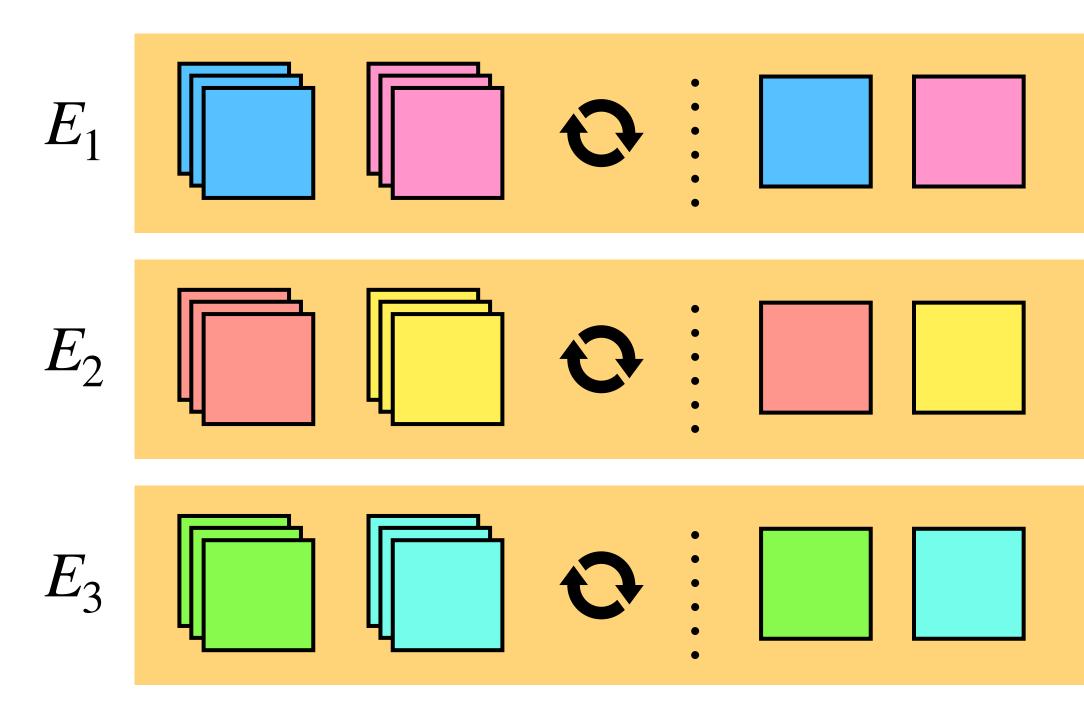


*called 'meta-batch'

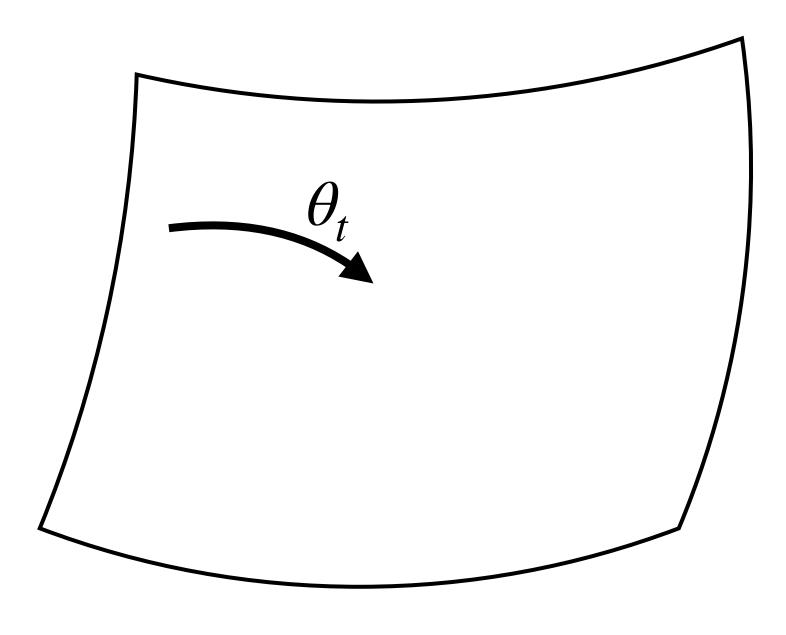


Parameter space

Optimization-based model

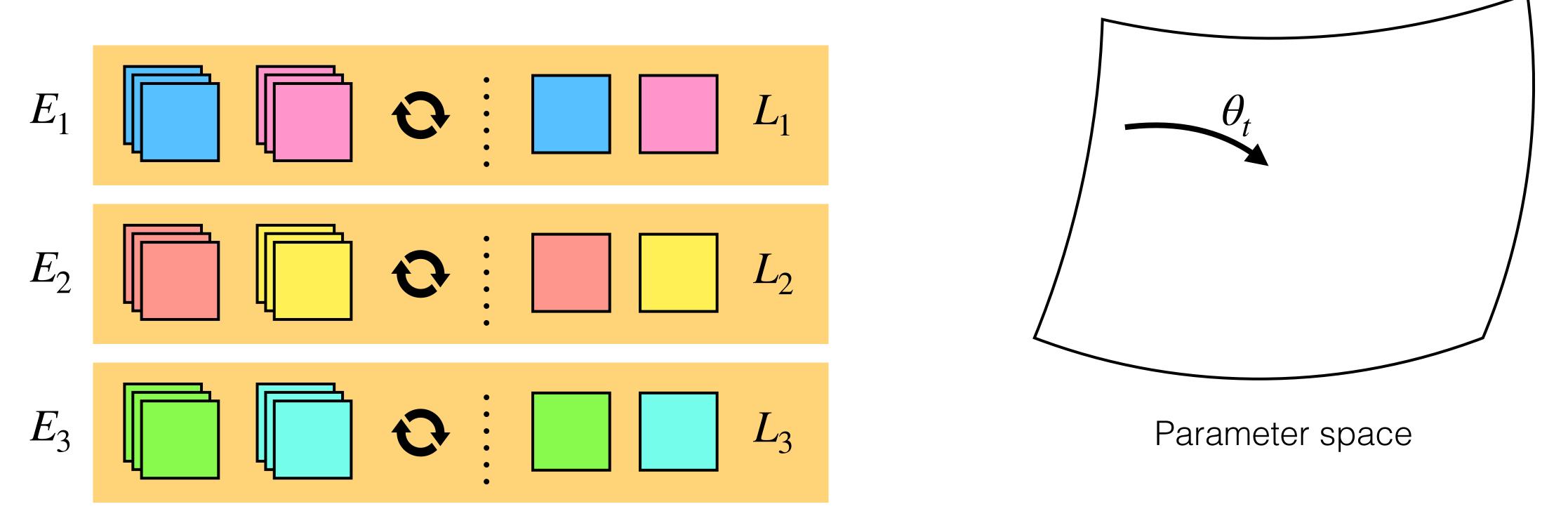


*called 'meta-batch'



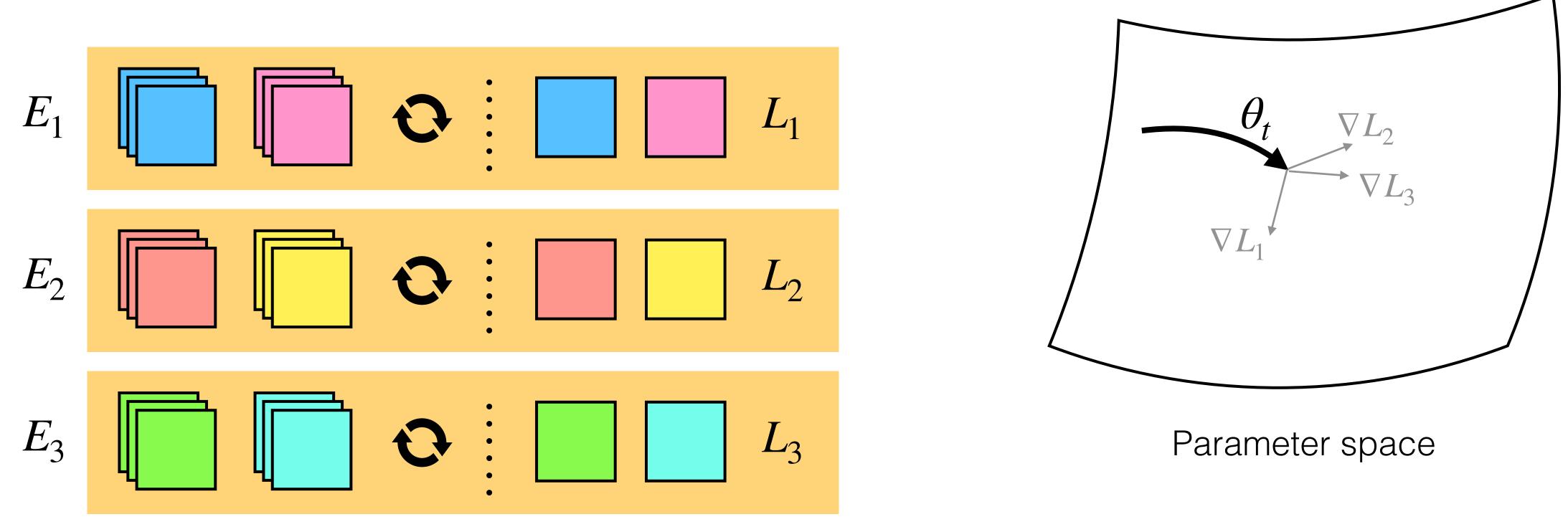
Parameter space

Optimization-based model



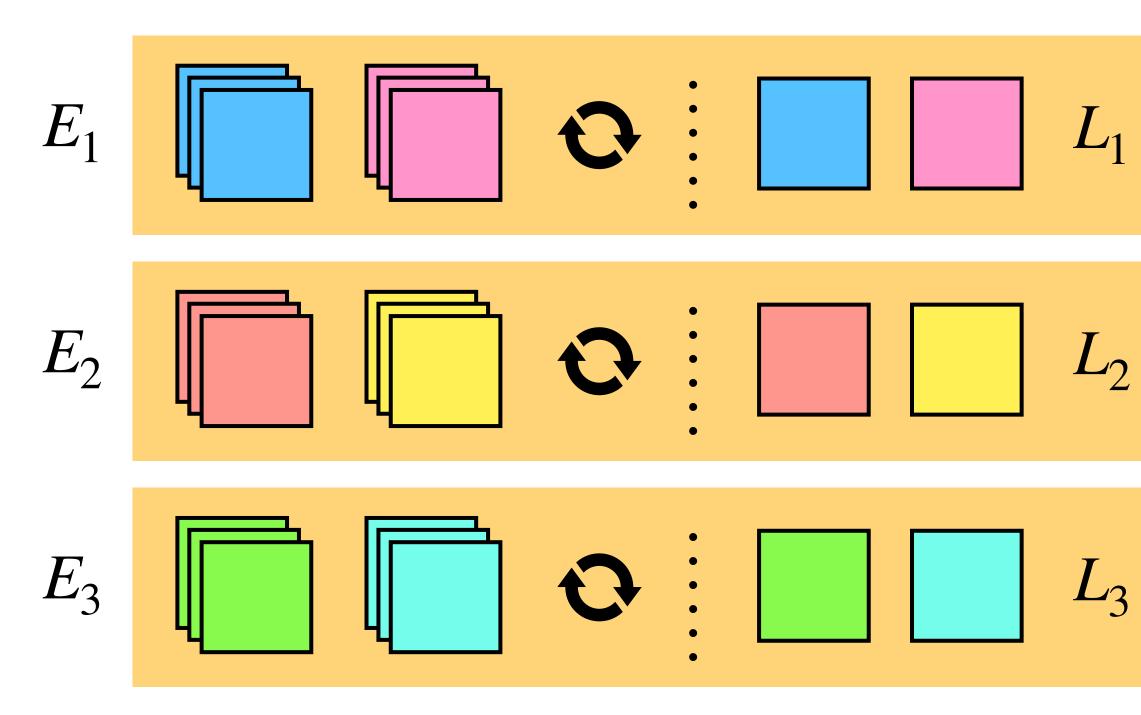
*called 'meta-batch'

Optimization-based model

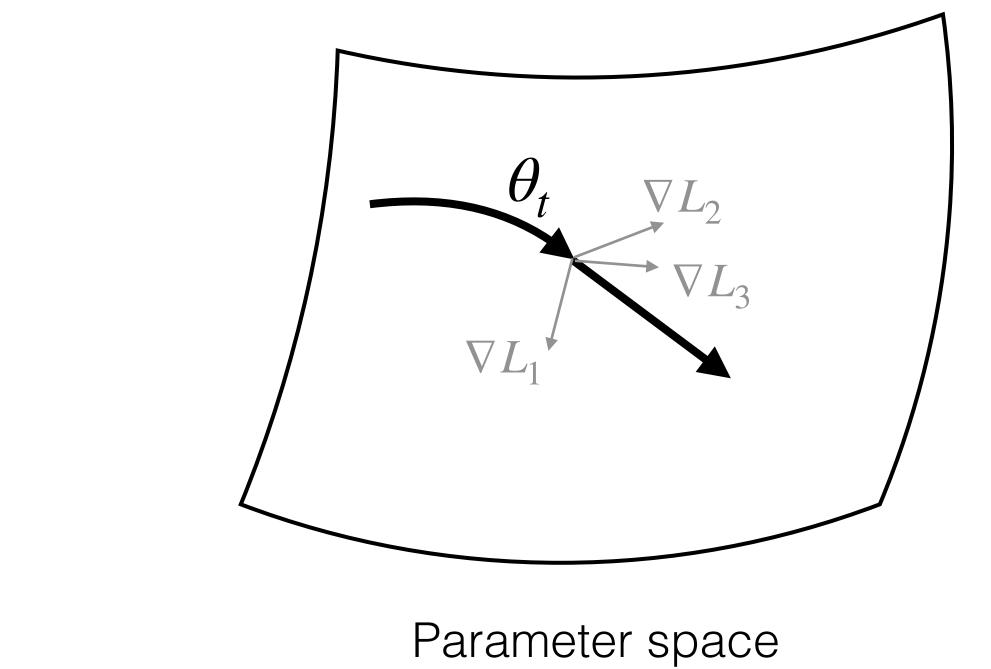


*called 'meta-batch'

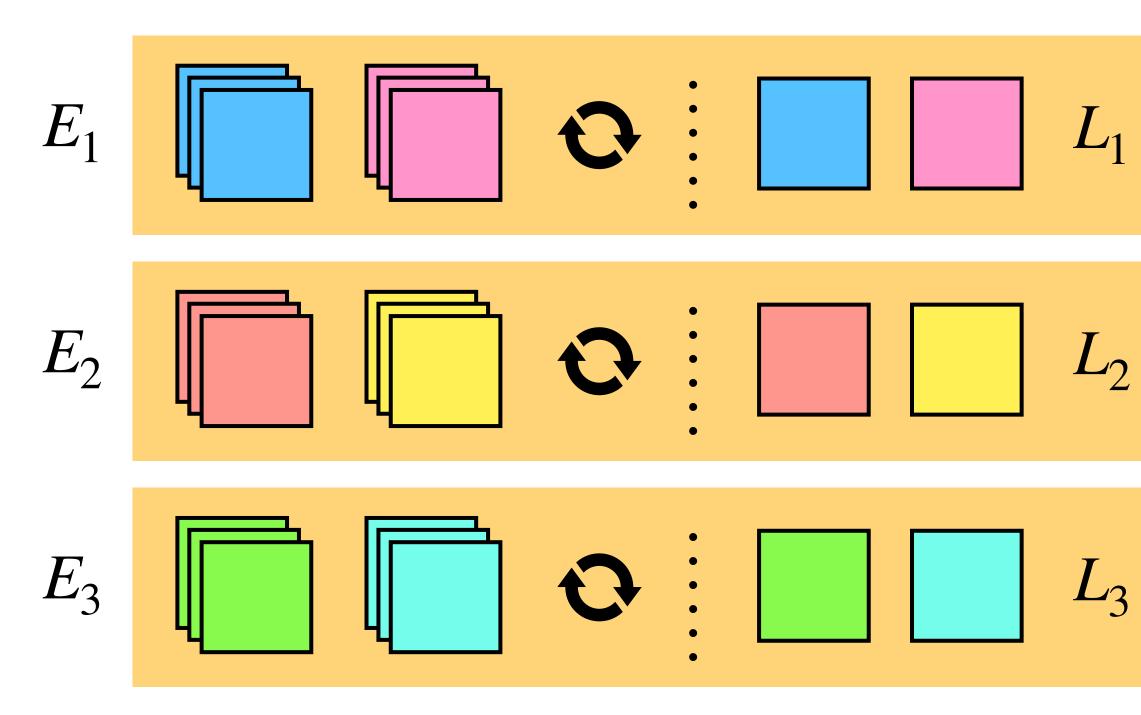
Optimization-based model



*called 'meta-batch'

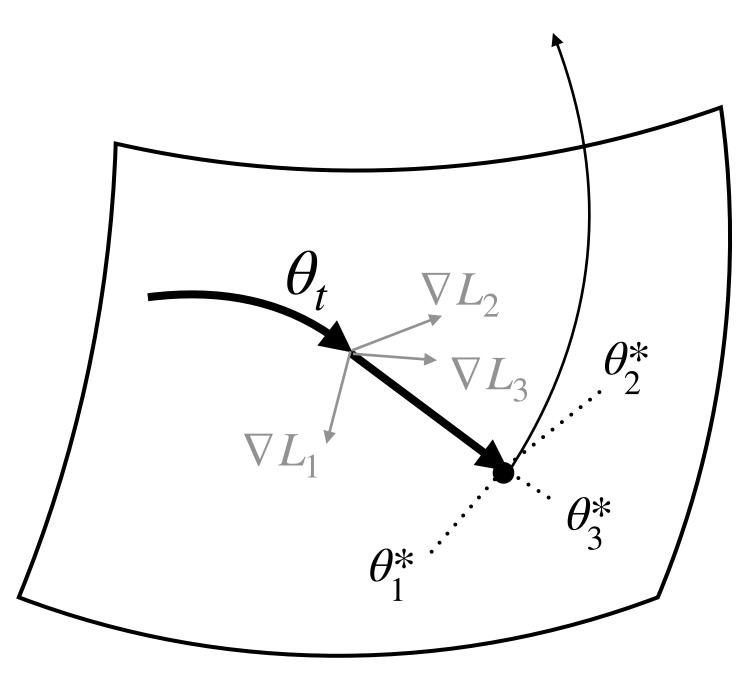


Optimization-based model



*called 'meta-batch'

Good initial parameter point



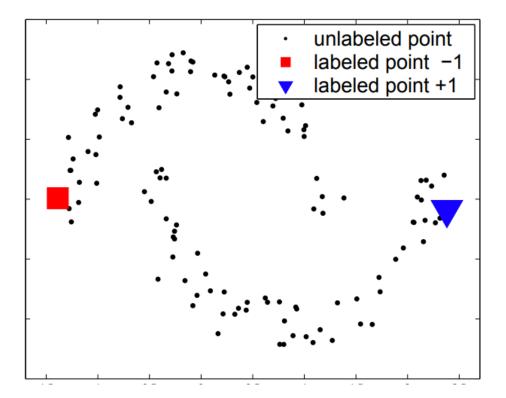
Parameter space

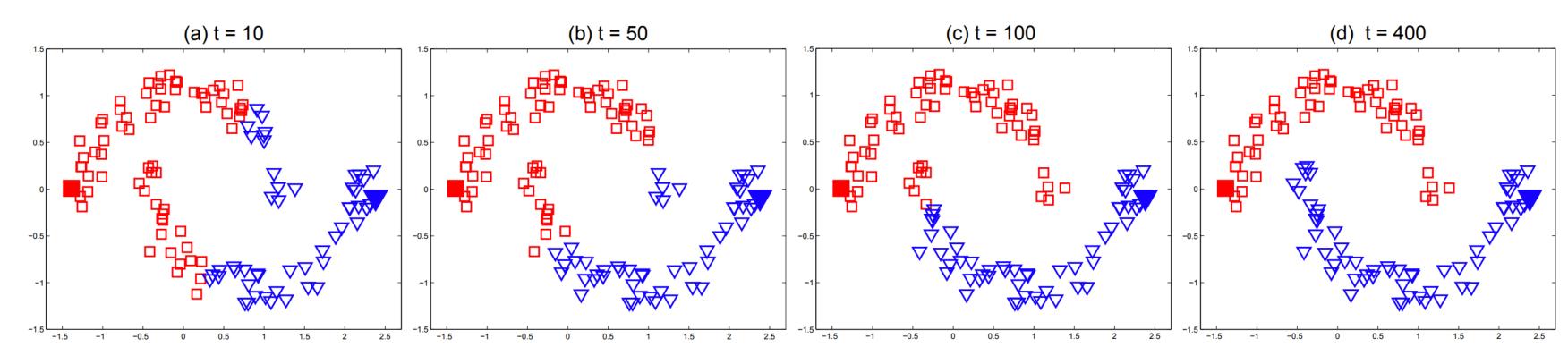
- What can we improve on prior works?
 - 1. **Relational information** between samples is not explicitly used
 - 2. Use only support samples as a clue and query samples for loss calculation (Fundamental difficulty)

- What can we improve on prior works?
 - 1. **Relational information** between samples is not explicitly used
 - 2. Use only support samples as a clue and query samples for loss calculation (Fundamental difficulty)
 - → Statistical measurement, graph structure, transduction method ...
 - are used in recent researches

- What can we improve on prior works?
 - 1. **Relational information** between samples is not explicitly used
 - 2. Use only support samples as a clue and query samples for loss calculation (Fundamental difficulty)

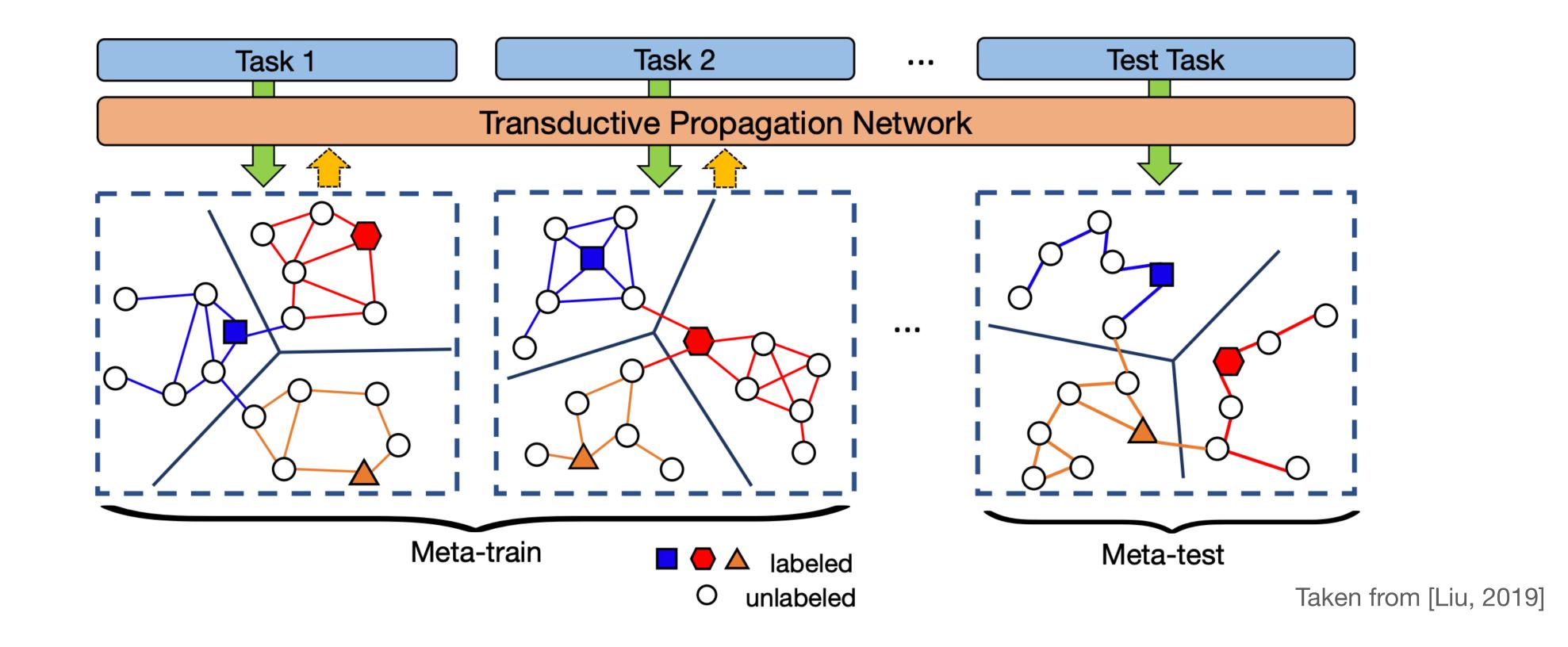
→ Label propagation algorithm!

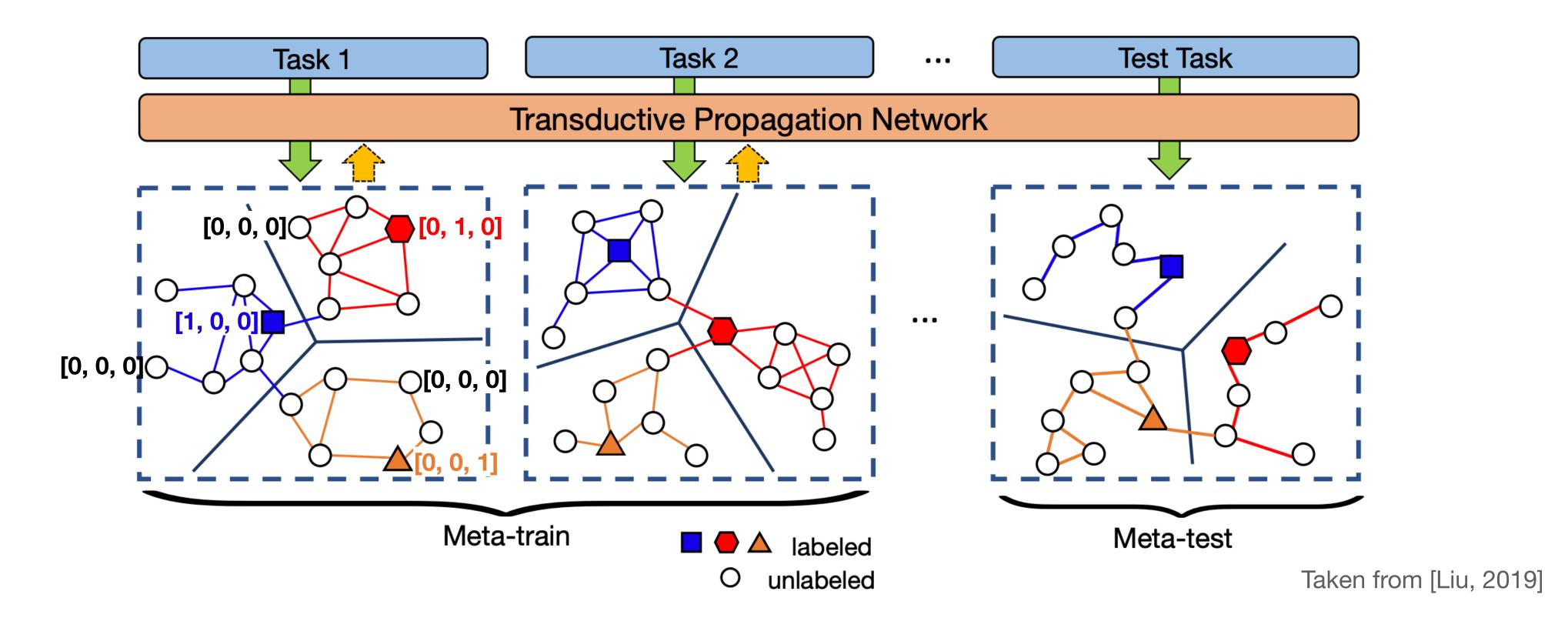


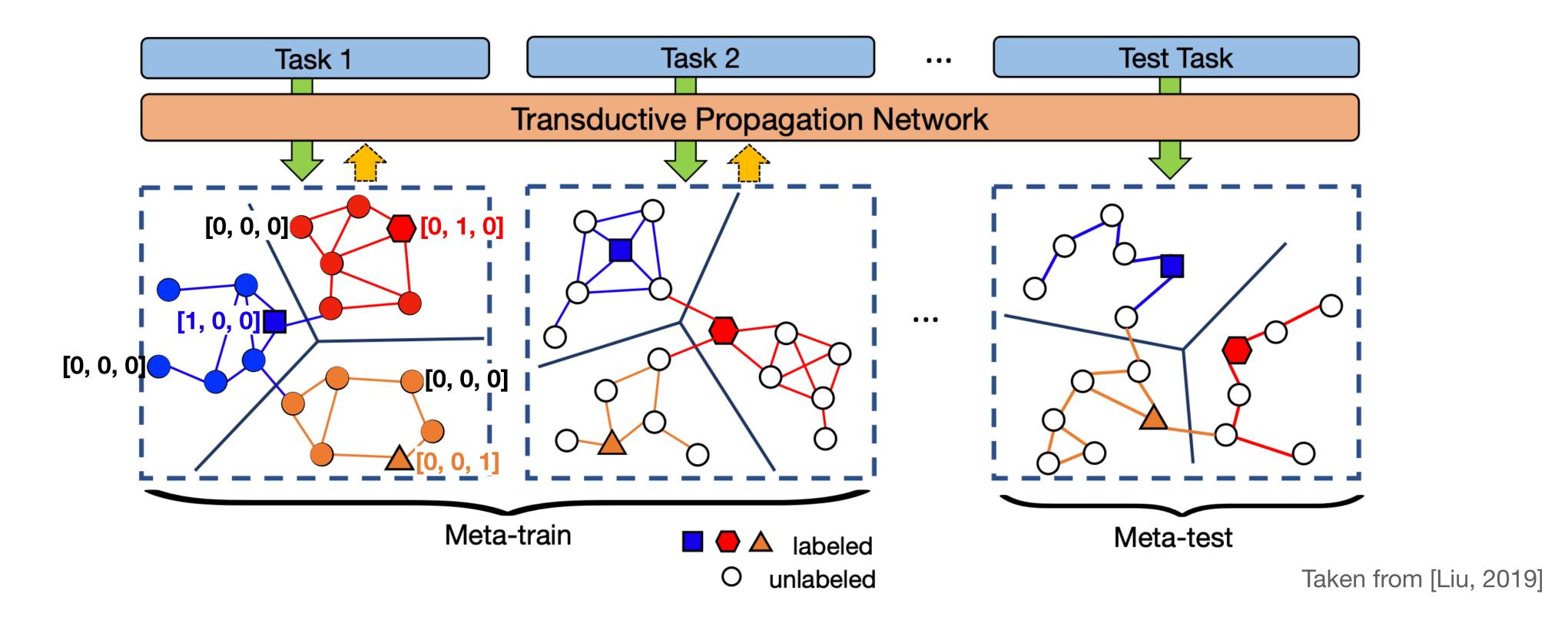


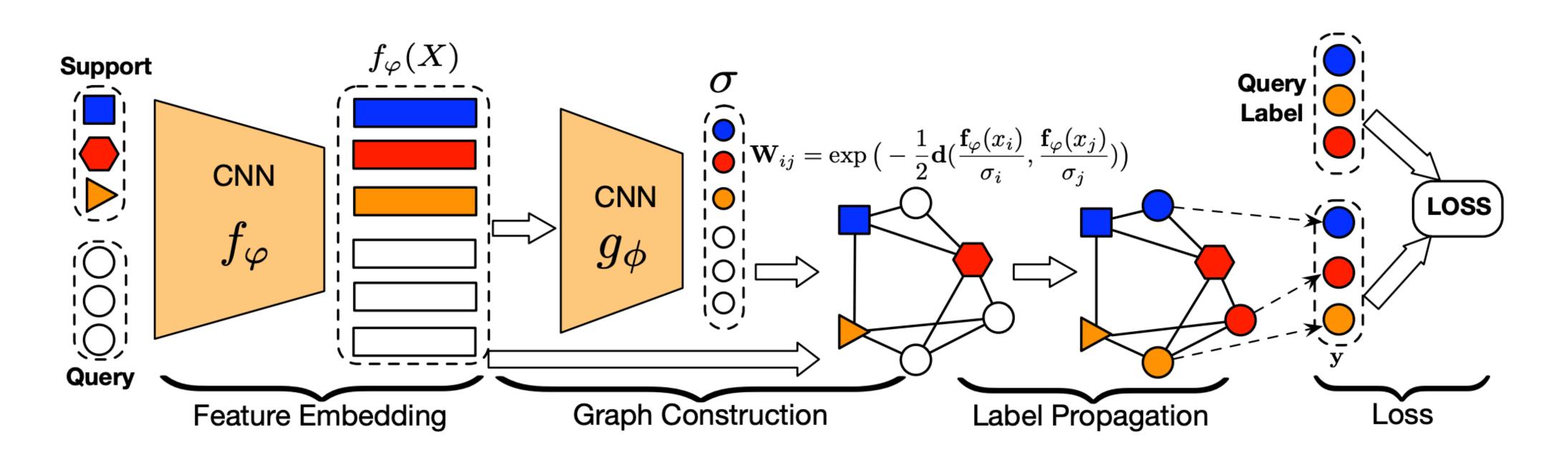
→ Label propagation algorithm!

- 1. Label propagation algorithm?
 - inapplicable in few-shot (data is limited and unevenly distributed)
- 2. What is the appropriate hyper-parameter?
 - Performance of transduction method is sensitive to the hyper-parameter (σ in label propagation algorithm)



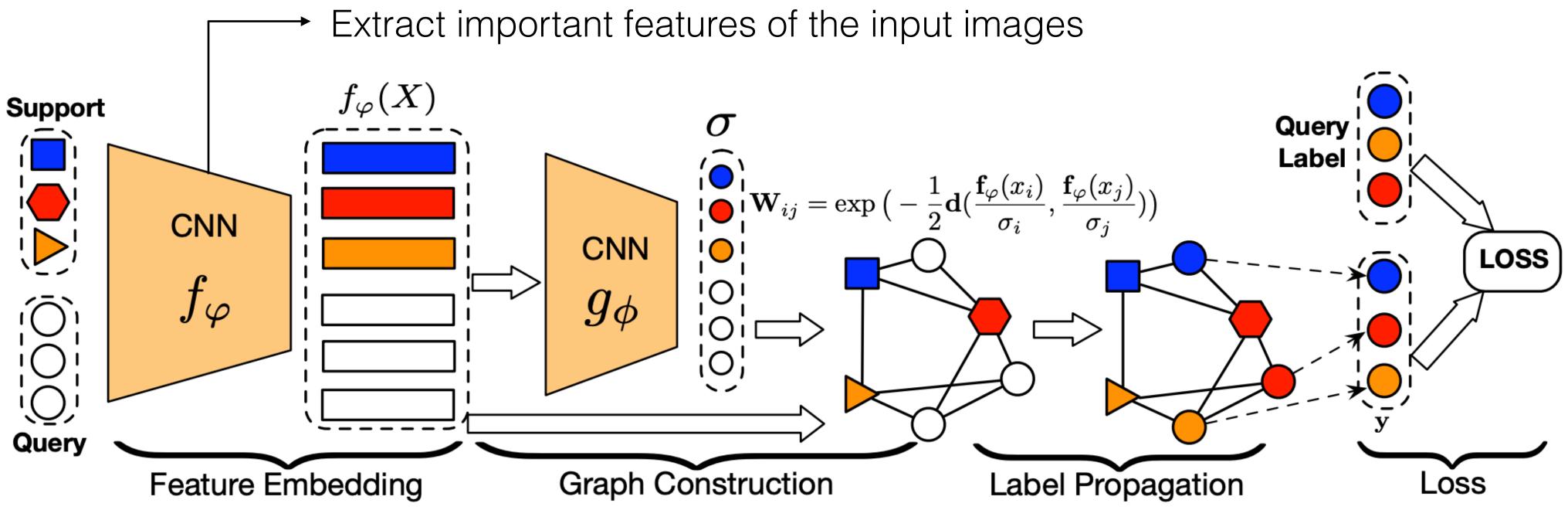




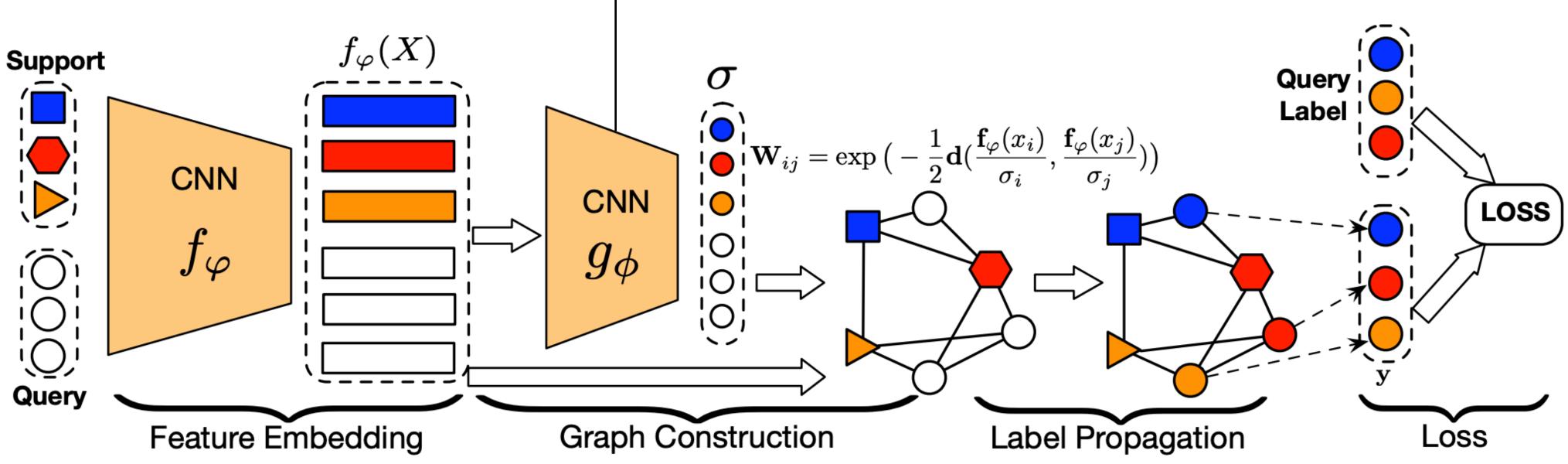


Taken from [Liu, 2019]

Feature Embedding

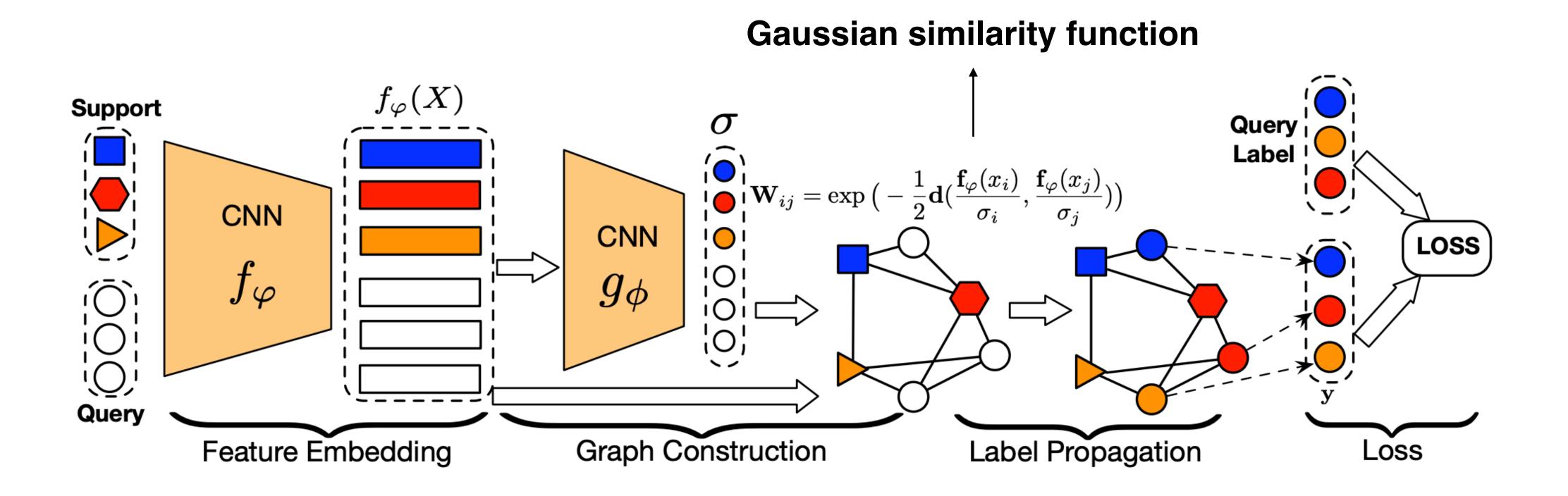


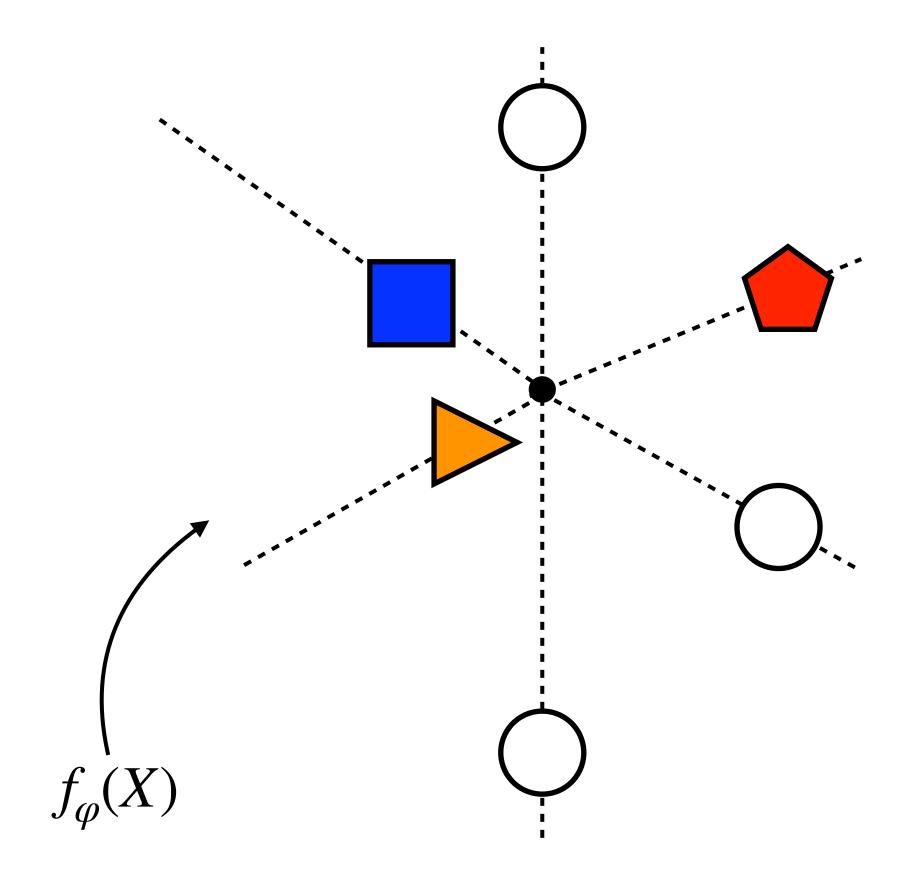
Same architecture f_{φ} for fair comparisons (four convolutional blocks)

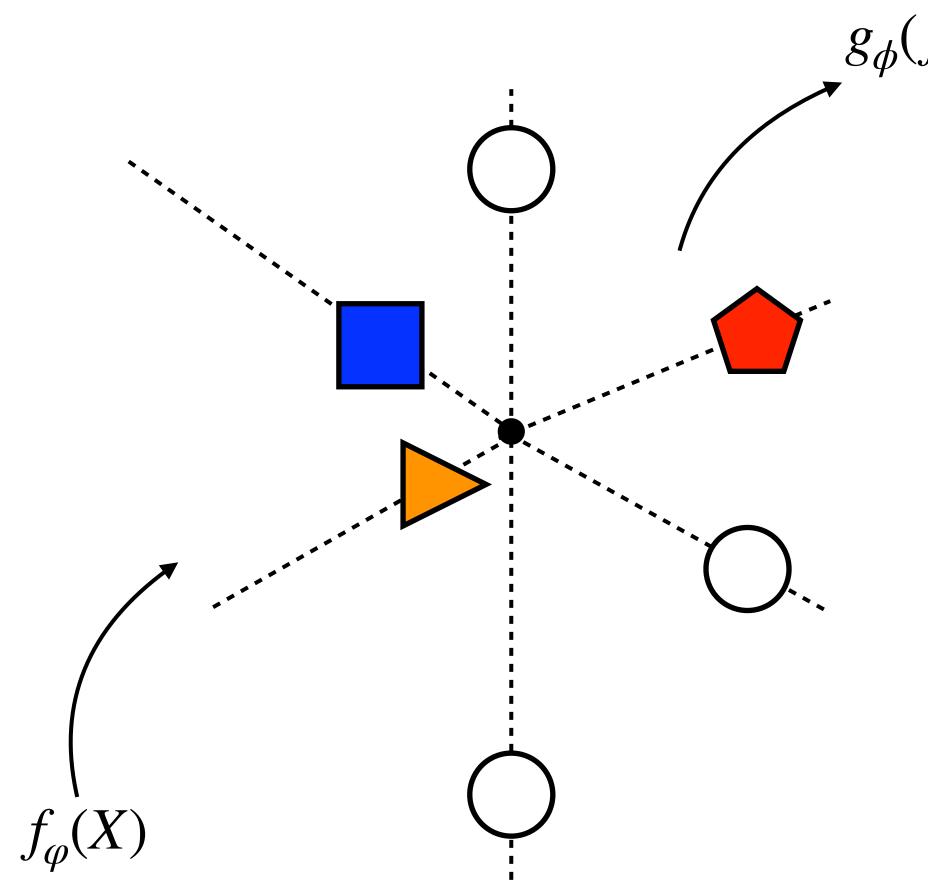


Create example-wise length-scale parameter σ

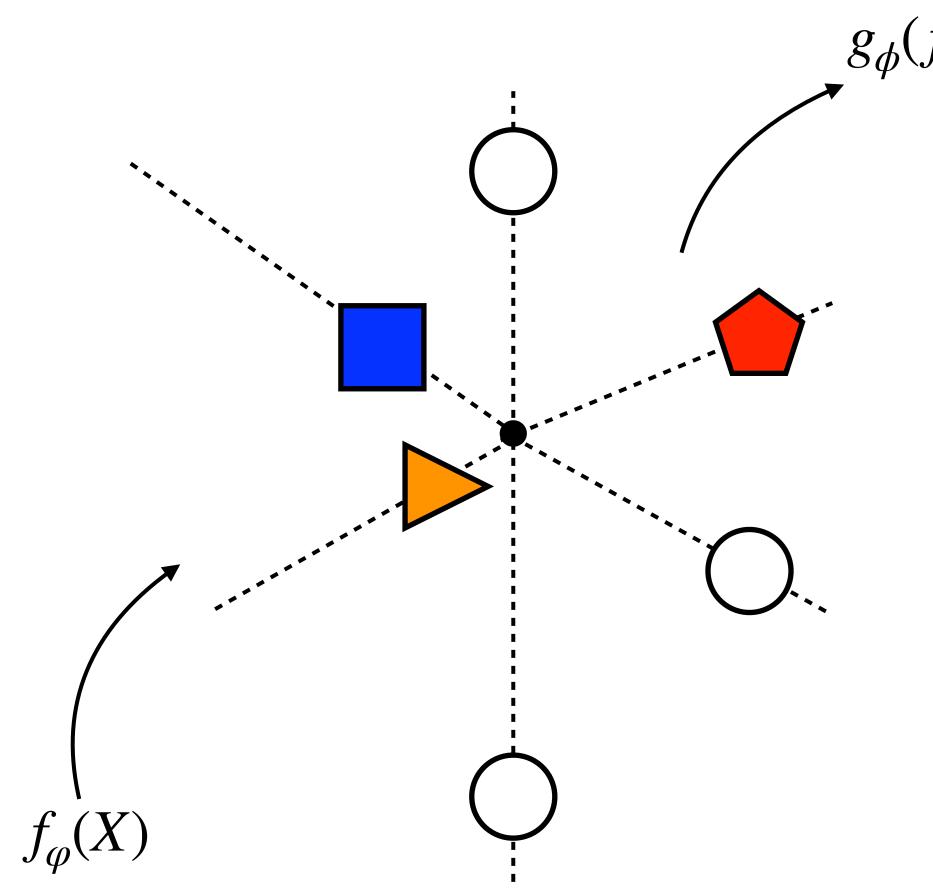
 $\sigma = g_{\phi}(f_{\varphi}(x_i))$ is used for calculating the similarity function W





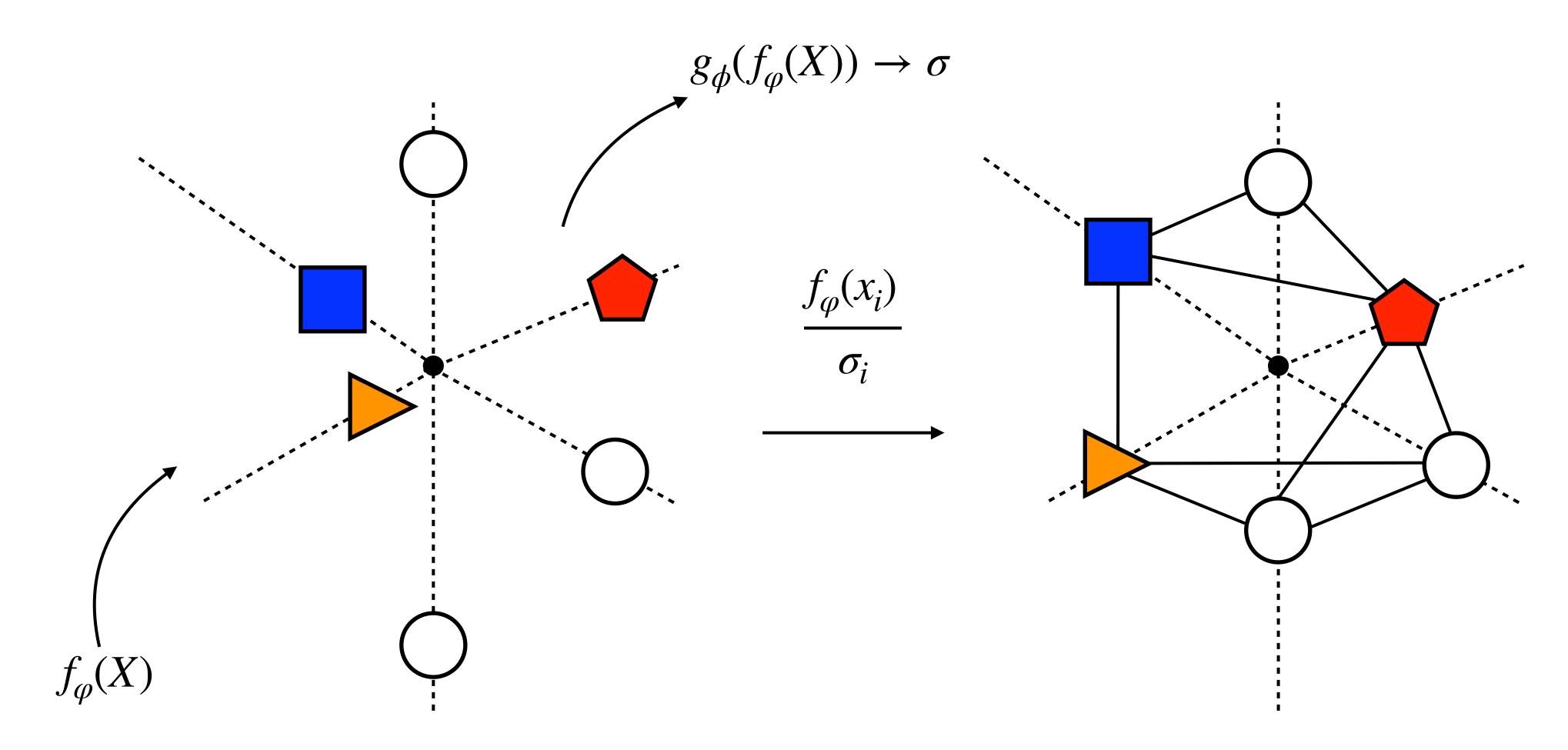


 $g_{\phi}(f_{\varphi}(X)) \to \sigma$



 $g_{\phi}(f_{\varphi}(X)) \to \sigma$

 $f_{\varphi}(x_i)$ σ_i



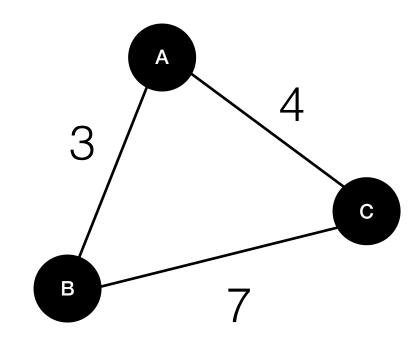
A common choice is Gaussian similarity function

$$W_{ij} = \exp(-\frac{d(x_i, x_j)}{2\sigma^2}) \rightarrow W_{ij} = \exp(-\frac{1}{2}d(\frac{f_{\varphi}(x_i)}{\sigma_i}, \frac{f_{\varphi}(x_j)}{\sigma_j}))$$

 Calculate the similarity based on the distance, but after adjusting with the scaling parameter σ

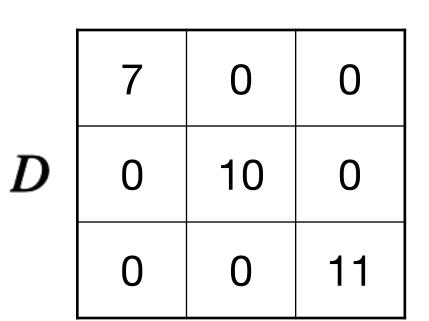
> I will create sigma σ like this.. and adjust the features like this.. Because I learned the general rule for task-adaptive graph construction

- lacksquare
- Apply the normalized graph Laplacians on W $S = D^{-\frac{1}{2}}WD^{-\frac{1}{2}}$, where D is (*i*, *i*)-value to be the sum of the *i*-th row of W



	0	3	4
W	3	0	7
	4	7	0

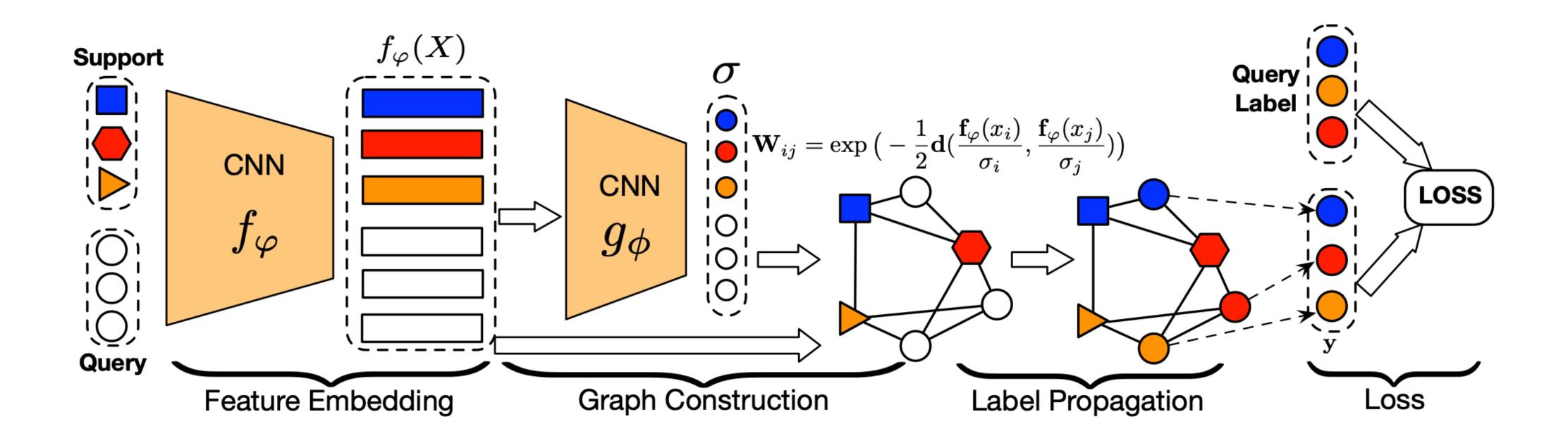
Only keeps the **k-max** values in each row of W (k-nearest neighbor graph)



|eigenvalue| < 1

0	0.359	0.456
0.359	0	0.667
0.456	0.667	0

S



Label propagation with S

• No trainable parameters in this stage

 $F_{t+1} = \alpha$

\mathscr{F} denote the set of $(N \times K + T) \times N$ matrix and $Y, F_t \in \mathscr{F}$ $\alpha \in (0,1)$ controls the amount of propagated information

$$SF_t + (1 - \alpha)Y$$

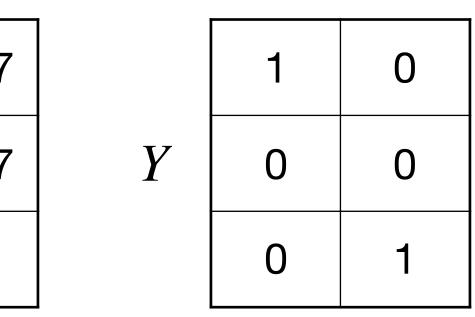
• No trainable parameters in this stage

$$F_{t+1} = \alpha SF_t + (1 - \alpha)Y$$

	0	0.47
SF_t	0.36	0.67
	0.47	0

\mathscr{F} denote the set of $(N \times K + T) \times N$ matrix and $Y, F_t \in \mathscr{F}$

 $\alpha \in (0,1)$ controls the amount of propagated information



• No trainable parameters in this stage

 $F_{t+1} = \alpha$

\mathscr{F} denote the set of $(N \times K + T) \times N$ matrix and $Y, F_t \in \mathscr{F}$ $\alpha \in (0,1)$ controls the amount of propagated information

$$SF_t + (1 - \alpha)Y$$

• No trainable parameters in this stage

 $F_{t+1} = \alpha$

 F_t converges $\rightarrow F^* = (1 - \alpha)(I - \alpha S)^{-1}Y$ *closed form (no iteration)

 \mathscr{F} denote the set of $(N \times K + T) \times N$ matrix and $Y, F_{\tau} \in \mathscr{F}$ $\alpha \in (0,1)$ controls the amount of propagated information

$$SF_t + (1 - \alpha)Y$$

• No trainable parameters in this stage

 \mathcal{F} denote the set of $(N \times$

 $\alpha \in (0,1)$ controls the a

 $F_{t+1} = \alpha_t$

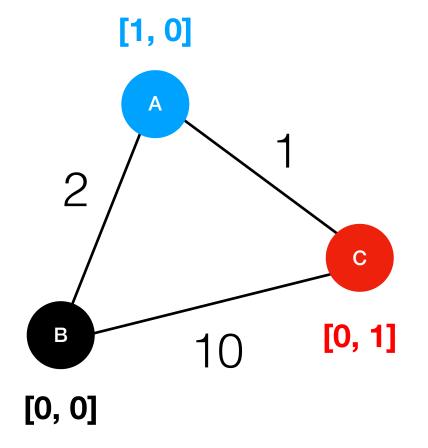
 F_t converges $\rightarrow F^* = (1 - \alpha)(I - \alpha S)^{-1}Y$

For classification $\rightarrow F^* = (I - \alpha S)^{-1} Y$

$$K + T) \times N$$
 matrix and $Y, F_t \in \mathscr{F}$
mount of propagated information

$$\alpha SF_t + (1 - \alpha)Y$$

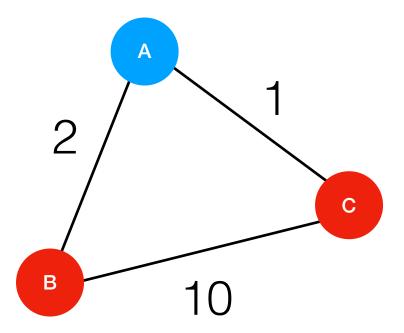
*closed form (no iteration)



	0	0.359	0.456
S	0.359	0	0.667
	0.456	0.667	0

Y

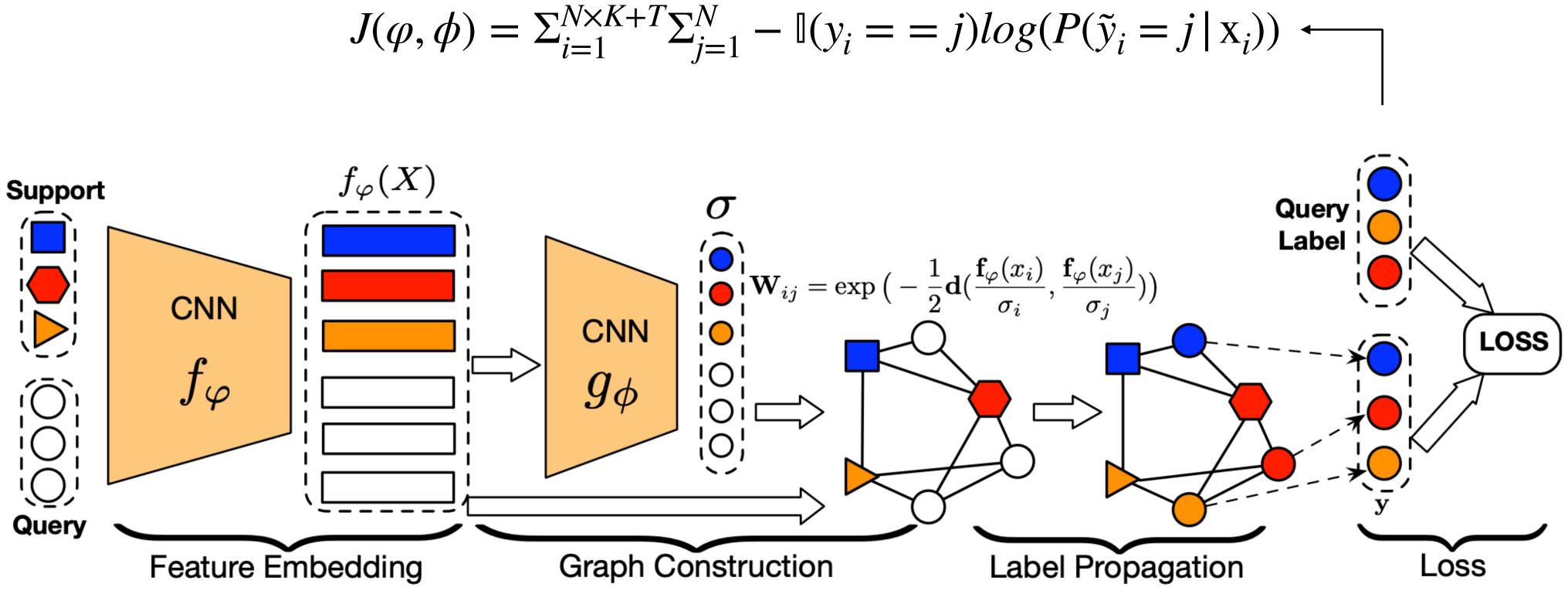
1	0
0	0
0	1



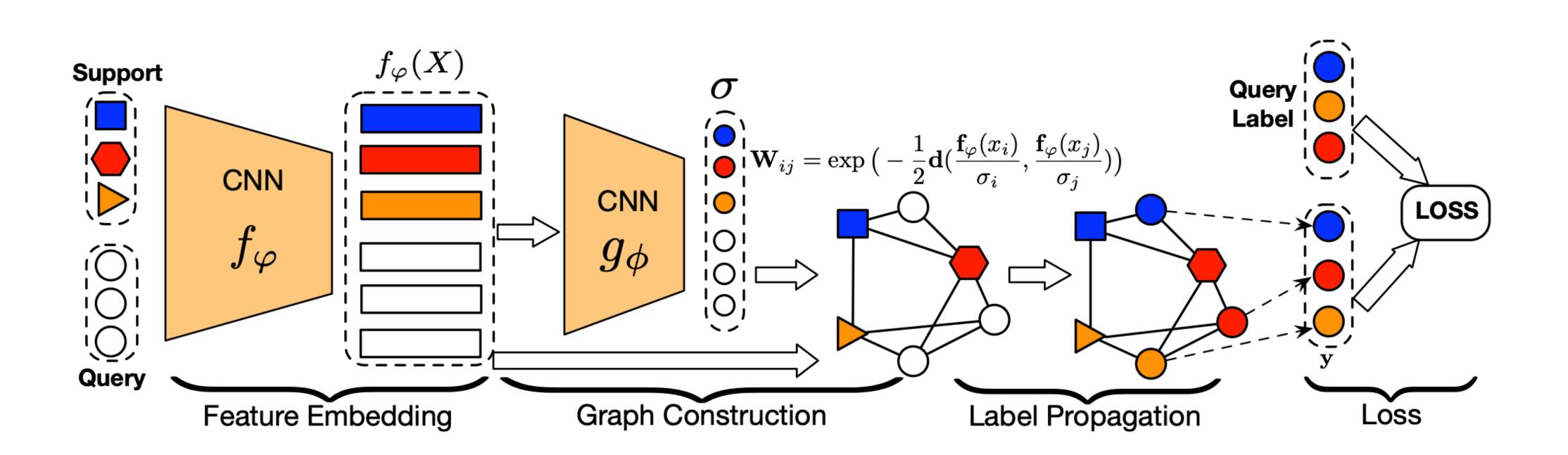
$$\to F^* = (I - \alpha S)^{-1} Y$$

When $\alpha = 0.99$

Loss



Compute cross-entropy loss between F^* and ground-truth labels from $S \cup Q$



Contribution Main contribution

- 1. First to model transduction inference explicitly in few-shot learning
- instances for unseen classes via episodic meta-learning
- (minilmageNet and tieredImageNet)

2. In transduction inference, propose to learn to propagate labels between data

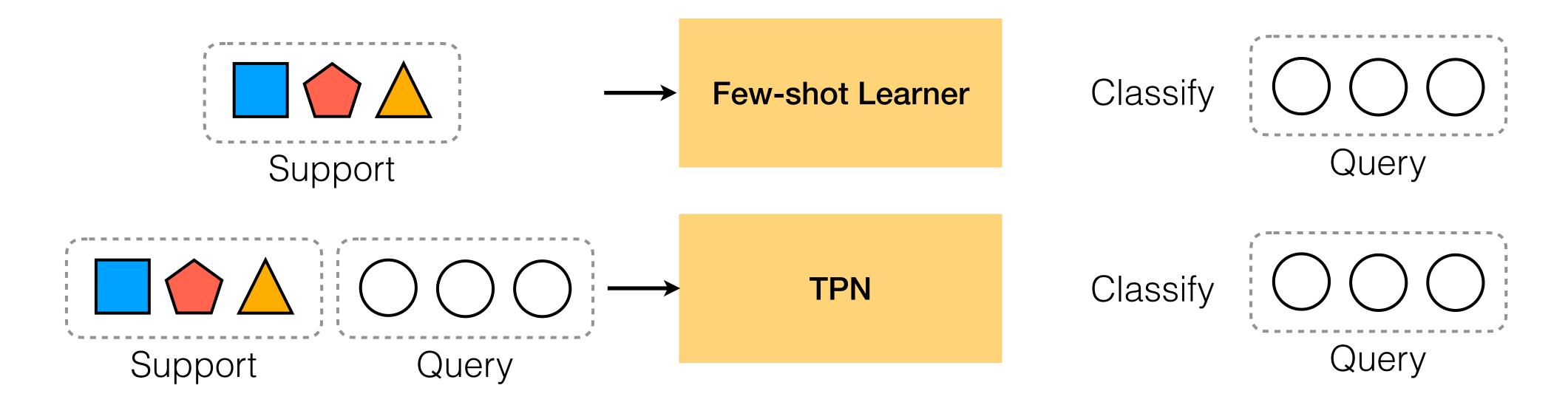
3. TPN outperforms the state-of-the-art method on both benchmark dataset

Contribution Inductive vs. Transductive

- **Induction** is reasoning from observed *training cases to general rules*, which are then applied to the test cases.
- **Transduction** is reasoning from observed, *specific(training)* cases to *specific(test)* cases.

Contribution Inductive vs. Transductive

• Example) 5-way 5-shot, T = 75



75 more examples for inference!

- minilmageNet: 100 classes, each class containing 600 examples

- Transduction No: Inference of query sample is performed individually
- Transduction **BN**: query samples information is shared using **BN**

tieredImageNet: 600 classes, each class containing 1281(avg.) examples

Transduction - Yes: Inference of query sample is performed at once (TPN)

Table 1: Few-shot classification accuracies on *min* Top results are highlighted.

Model

MAML (Finn et al., 2017) MAML+Transduction Reptile (Nichol et al., 2018) Reptile + BN (Nichol et al., 2018) PROTO NET (Snell et al., 2017) PROTO NET (Higher Way) (Snell et al., 2017 RELATION NET (Sung et al., 2018) Label Propagation TPN TPN (Higher Shot)

		5-way Acc		10-way Acc		
	Transduction	1-shot	5-shot	1-shot	5-shot	
	BN	48.70	63.11	31.27	46.92	
	Yes	50.83	66.19	31.83	48.23	
	No	47.07	62.74	31.10	44.66	
	BN	49.97	65.99	32.00	47.60	
	No	46.14	65.77	32.88	49.29	
7)	No	49.42	68.20	34.61	50.09	
	BN	51.38	67.07	34.86	47.94	
	Yes	52.31	68.18	35.23	51.24	
	Yes	53.75	69.43	36.62	52.32	
	Yes	55.51	69.86	38.44	52.77	

Table 1: Few-shot classification accuracies on miniImageNet. All results are averaged over 600 test episodes.

Table 2: Few-shot classification accuracies on a episodes. Top results are highlighted.

Model

MAML (Finn et al., 2017) MAML + Transduction Reptile (Nichol et al., 2018) Reptile + BN (Nichol et al., 2018) PROTO NET (Snell et al., 2017) PROTO NET (Higher Way) (Snell et al., 2017) RELATION NET (Sung et al., 2018) Label Propagation TPN TPN (Higher Shot)

tieredImageNet.	All	results	are	averaged	over	600	test
-----------------	-----	---------	-----	----------	------	-----	------

	5-way Acc		10-wa	v Acc
Transduction	1-shot	5-shot	1-shot	5-shot
BN	51.67	70.30	34.44	53.32
Yes	53.23	70.83	34.78	54.67
No	48.97	66.47	33.67	48.04
BN	52.36	71.03	35.32	51.98
No	48.58	69.57	37.35	57.83
No	53.31	72.69	38.62	58.32
BN	54.48	71.31	36.32	58.05
Yes	55.23	70.43	39.39	57.89
Yes	57.53	72.85	40.93	59.17
Yes	59.91	73.30	44.80	59.44
	BN Yes No BN No No BN Yes Yes	Transduction1-shotBN51.67Yes53.23No48.97BN52.36No48.58No53.31BN54.48Yes55.23Yes57.53	BN51.6770.30Yes53.2370.83No48.9766.47BN52.3671.03No48.5869.57No53.3172.69BN54.4871.31Yes55.2370.43Yes 57.5372.85	Transduction1-shot5-shot1-shotBN51.6770.3034.44Yes53.2370.8334.78No48.9766.4733.67BN52.3671.0335.32No48.5869.5737.35No53.3172.6938.62BN54.4871.3136.32Yes55.2370.4339.39Yes57.5372.8540.93

Table 3: Semi-supervised comparison on miniImageNet.

Model

Soft k-Means (Ren et al., 2018) Soft k-Means+Cluster (Ren et al., 2018) Masked Soft k-Means (Ren et al., 2018) TPN-semi

Table 4: Semi-supervised comparison on *tiered*ImageNet.

Model

Soft k-Means (Ren et al., 2018) Soft k-Means+Cluster (Ren et al., 2018) Masked Soft k-Means (Ren et al., 2018) TPN-semi

	52.78	66.42	50.43	64.95
B)	50.41	64.39	49.04	62.96
8)	49.03	63.08	48.86	61.27
	50.09	64.59	48.70	63.55
	1-shot	5-shot	1-shot w/D	5-shot w/D

1-shot	5-shot	1-shot w/D	5-shot w/D
51.52	70.25	49.88	68.32
51.85	69.42	51.36	67.56
52.39	69.88	51.38	69.08
55.74	71.01	53.45	69.93
	51.52 51.85 52.39	51.5270.2551.8569.4252.3969.88	51.5270.2549.8851.8569.4251.3652.3969.8851.38

Conclusion

- Transductive + Few-shot
 - Applicable to Few-shot Leaning
 - Propose the possibility of follow-up research
- σ is not hyper-parameter
 - Key-point: Task-adaptive scaling parameter
 - Largely ameliorating the uneven data distribution problem
- The state-of-the-art performance

• Higher shot / Query number

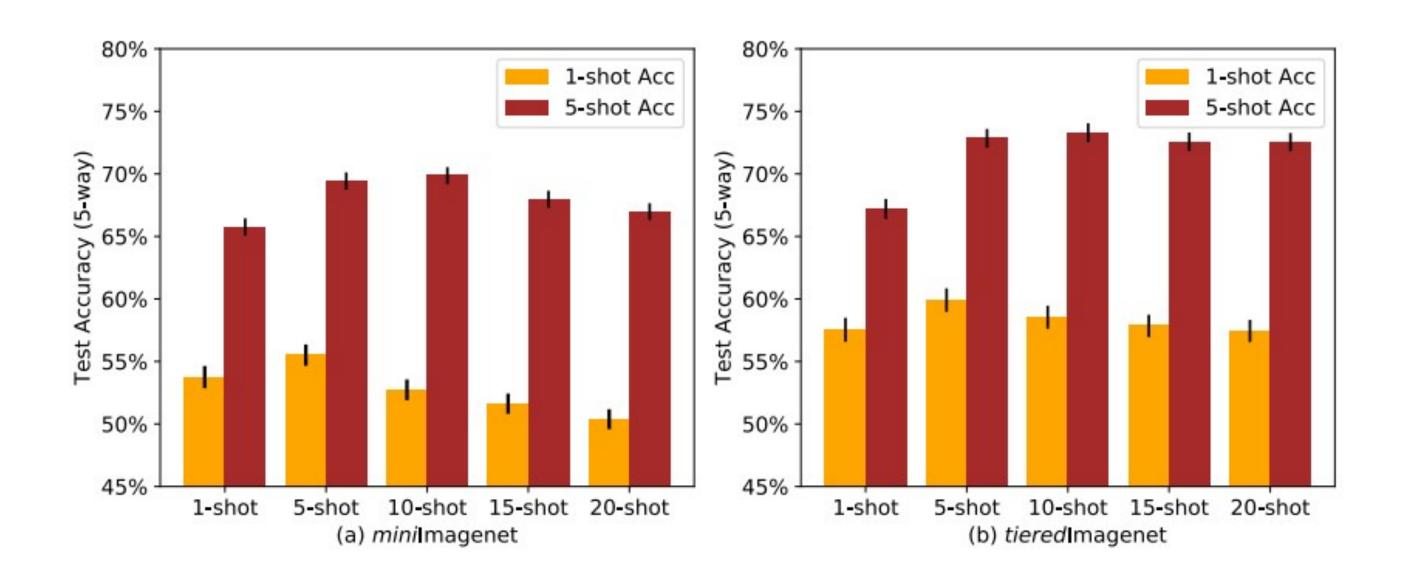


Table 5: Accuracy with various query numbers

	miniImageNet 1-shot						
	5	10	15	20	25	30	
Train=15	52.29	52.95	53.75	53.92	54.57	54.47	
Test=15	53.53	53.72	53.75	52.79	52.84	52.47	
Train=Test	51.94	53.47	53.75	54.00	53.59	53.32	
	miniImageNet 5-shot						
5 10 15 20					25	30	
Train=15	66.97	69.30	69.43	69.92	70.54	70.36	
Test=15	68.50	68.85	69.43	69.26	69.12	68.89	
Train=Test	67.55	69.22	69.43	69.85	70.11	69.94	

____ _____

_____ ____

- Loss
 - Softmax using F^* and negative log-likelihood cross-entropy

 $P(ilde{y_i} = j | \mathbf{x}_i)$ $J(arphi,\phi)=\Sigma_{i=1}^{N imes K+T}\Sigma_{i=1}^N$ –

$$egin{aligned} &= rac{\exp(F^*_{ij})}{\Sigma^N_{j=1}\exp(F^*_{ij})} \ &- \mathbb{I}(y_i == j) log(P(ilde{y_i} = j) | \mathrm{x}_i) \end{aligned}$$

- |eigenvalue of S| < 1
 - 1. Similar matrix in Linear algebra

 $B=P^{-1}AP\iff PBP^{-1}=A$. If $Av=\lambda v$, then $PBP^{-1}v=\lambda v\implies BP^{-1}v=\lambda P^{-1}v$

2. S is similar with markov(stochastic) matrix

S is similar with $A=D^{-1}W$ Meaning of similarity: $B=P^{-1}AP$ $A=D^{-1}W=D^{-1/2}SD^{1/2}$

• Convergence of F_t

$$egin{aligned} F(0) &= Y, ext{ and } F(t+1) = lpha SF(t) + (1{-}lpha)Y \ F(t) &= (lpha S)^{t-1}Y + (1{-}lpha)\Sigma_{i=0}^{t-1}(lpha S)^iY \end{aligned}$$

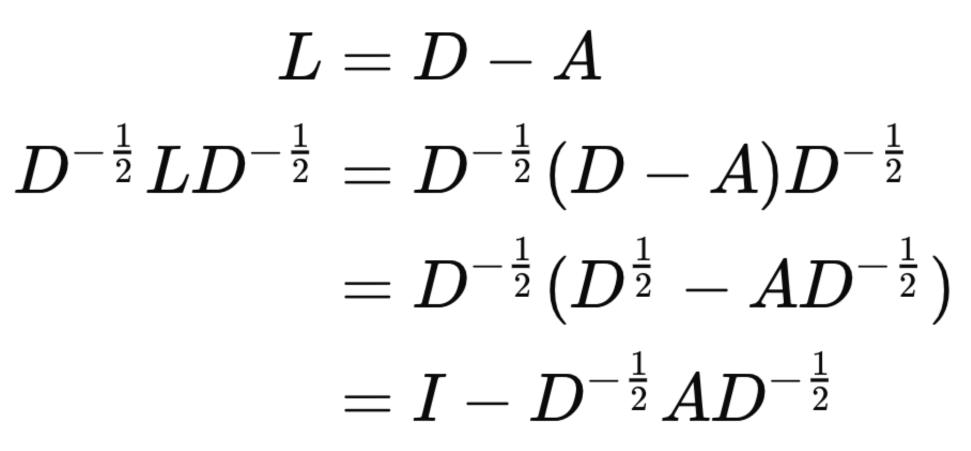
If $0 < \alpha < 1$ and |eigenvalue of S| < 1,

$$\lim_{t o\infty} (lpha S)^{t-1} = 0, ext{ and } \lim_{t o\infty} \Sigma_{i=0}^{t-1} (lpha S)^i = (1-lpha S)^{-1}$$

$$F^* = lim_{t
ightarrow\infty}F_t = (1-lpha)(1-lpha S)^{-1}Y$$

- Transductive setting
- **MAML**: All support & query info were used for calculating BN statistics **MAML+Transduction**: Add *transduction regularization* term
- **Reptile:** All support and only one query info were used for calculating BN statistics
- **Reptile+BN:** All support & query info were used for calculating BN statistics
- **ProtoNet:** All support and only one query info were used for calculating BN statistics

Normalized graph Laplacian



MAML+Transduction

$$\mathcal{J}(\theta) = \sum_{i=1}^{T} \mathbf{y}_i \log \mathbb{P}(\widehat{\mathbf{y}}_i | \mathbf{x}_i) + \sum_{i,j=1}^{N \times K+T} V$$

- Sigma
 - conv conv FC(out 8) FC(out 1)

$W_{ij} \| \widehat{\mathbf{y}}_i - \widehat{\mathbf{y}}_j \|_2^2$